Graphical Modeling for Multi-Source Domain Adaptation

计算机科学 域适应 图形模型 适应(眼睛) 人工智能 领域(数学分析) 分类器(UML) 数学 光学 物理 数学分析
作者
Minghao Xu,Hang Wang,Bingbing Ni
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (3): 1727-1741 被引量:12
标识
DOI:10.1109/tpami.2022.3172372
摘要

Multi-Source Domain Adaptation (MSDA) focuses on transferring the knowledge from multiple source domains to the target domain, which is a more practical and challenging problem compared to the conventional single-source domain adaptation. In this problem, it is essential to model multiple source domains and target domain jointly, and an effective domain combination scheme is also highly required. The graphical structure among different domains is useful to tackle these challenges, in which the interdependency among various instances/categories can be effectively modeled. In this work, we propose two types of graphical models, i.e. C onditional R andom F ield for MSDA ( CRF-MSDA ) and M arkov R andom F ield for MSDA ( MRF-MSDA ), for cross-domain joint modeling and learnable domain combination. In a nutshell, given an observation set composed of a query sample and the semantic prototypes ( i.e. representative category embeddings) on various domains, the CRF-MSDA model seeks to learn the joint distribution of labels conditioned on the observations. We attain this goal by constructing a relational graph over all observations and conducting local message passing on it. By comparison, MRF-MSDA aims to model the joint distribution of observations over different Markov networks via an energy-based formulation, and it can naturally perform label prediction by summing the joint likelihoods over several specific networks. Compared to the CRF-MSDA counterpart, the MRF-MSDA model is more expressive and possesses lower computational cost. We evaluate these two models on four standard benchmark data sets of MSDA with distinct domain shift and data complexity, and both models achieve superior performance over existing methods on all benchmarks. In addition, the analytical studies illustrate the effect of different model components and provide insights about how the cross-domain joint modeling performs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Roman完成签到,获得积分10
1秒前
slin_sjtu发布了新的文献求助10
3秒前
周周发布了新的文献求助20
3秒前
小党完成签到,获得积分10
3秒前
4秒前
昏睡的白桃完成签到,获得积分10
4秒前
小宇OvO发布了新的文献求助10
5秒前
jiaolulu发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
真的不想干活了完成签到,获得积分10
9秒前
美丽的依琴完成签到,获得积分10
10秒前
Xin完成签到,获得积分10
16秒前
Aurora.H完成签到,获得积分10
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
duckspy发布了新的文献求助10
22秒前
22秒前
22秒前
xiaowan完成签到,获得积分10
23秒前
Terry完成签到,获得积分10
24秒前
张张张哈哈哈完成签到,获得积分10
24秒前
Research完成签到 ,获得积分10
24秒前
称心采枫完成签到 ,获得积分0
25秒前
25秒前
新新新新新发顶刊完成签到 ,获得积分10
26秒前
L3完成签到,获得积分10
27秒前
我是科研小能手完成签到,获得积分10
27秒前
风中的小丸子完成签到,获得积分10
28秒前
28秒前
时尚俊驰发布了新的文献求助10
29秒前
29秒前
29秒前
Grin完成签到,获得积分10
30秒前
周周完成签到,获得积分20
30秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022