Graphical Modeling for Multi-Source Domain Adaptation

计算机科学 域适应 图形模型 适应(眼睛) 人工智能 领域(数学分析) 分类器(UML) 数学 光学 物理 数学分析
作者
Minghao Xu,Hang Wang,Bingbing Ni
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (3): 1727-1741 被引量:12
标识
DOI:10.1109/tpami.2022.3172372
摘要

Multi-Source Domain Adaptation (MSDA) focuses on transferring the knowledge from multiple source domains to the target domain, which is a more practical and challenging problem compared to the conventional single-source domain adaptation. In this problem, it is essential to model multiple source domains and target domain jointly, and an effective domain combination scheme is also highly required. The graphical structure among different domains is useful to tackle these challenges, in which the interdependency among various instances/categories can be effectively modeled. In this work, we propose two types of graphical models, i.e. C onditional R andom F ield for MSDA ( CRF-MSDA ) and M arkov R andom F ield for MSDA ( MRF-MSDA ), for cross-domain joint modeling and learnable domain combination. In a nutshell, given an observation set composed of a query sample and the semantic prototypes ( i.e. representative category embeddings) on various domains, the CRF-MSDA model seeks to learn the joint distribution of labels conditioned on the observations. We attain this goal by constructing a relational graph over all observations and conducting local message passing on it. By comparison, MRF-MSDA aims to model the joint distribution of observations over different Markov networks via an energy-based formulation, and it can naturally perform label prediction by summing the joint likelihoods over several specific networks. Compared to the CRF-MSDA counterpart, the MRF-MSDA model is more expressive and possesses lower computational cost. We evaluate these two models on four standard benchmark data sets of MSDA with distinct domain shift and data complexity, and both models achieve superior performance over existing methods on all benchmarks. In addition, the analytical studies illustrate the effect of different model components and provide insights about how the cross-domain joint modeling performs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分20
刚刚
11112222发布了新的文献求助10
1秒前
情怀应助自由的老姆采纳,获得10
1秒前
1秒前
1秒前
2秒前
H1发布了新的文献求助10
2秒前
lh完成签到,获得积分10
3秒前
LF完成签到,获得积分10
3秒前
怕黑道消完成签到 ,获得积分10
3秒前
3秒前
4秒前
欢呼曼荷完成签到,获得积分10
5秒前
开心千青发布了新的文献求助10
5秒前
concise完成签到,获得积分10
6秒前
华仔应助小吴采纳,获得10
6秒前
6秒前
fillippo99应助苏信怜采纳,获得20
6秒前
kk发布了新的文献求助10
7秒前
7秒前
伶俐从筠应助科研通管家采纳,获得10
7秒前
敬老院N号应助科研通管家采纳,获得30
7秒前
Ben关闭了Ben文献求助
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得30
8秒前
蒋时晏应助NN采纳,获得30
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
Joel完成签到 ,获得积分10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
Orange应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
猎鹰2023发布了新的文献求助10
8秒前
灯火完成签到,获得积分10
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053