化学
肟
烯丙基重排
催化作用
双功能
光化学
杂原子
对映选择合成
试剂
铜
组合化学
有机化学
戒指(化学)
作者
Jun Chen,Yujie Liang,Peng‐Zi Wang,Guoqing Li,Bin Zhang,Hao Qian,Xiao-Die Huan,Wei Guan,Wen‐Jing Xiao,Jia‐Rong Chen
摘要
The construction of carbon–heteroatom bonds is one of the most active areas of research in organic chemistry because the function of organic molecules is often derived from the presence of heteroatoms. Although considerable advances have recently been achieved in radical-involved catalytic asymmetric C–N bond formation, there has been little progress in the corresponding C–O bond-forming processes. Here, we describe a photoinduced copper-catalyzed cross-coupling of readily available oxime esters and 1,3-dienes to generate diversely substituted allylic esters with high regio- and enantioselectivity (>75 examples; up to 95% ee). The reaction proceeds at room temperature under excitation by purple light-emitting diodes (LEDs) and features the use of a single, earth-abundant copper-based chiral catalyst as both the photoredox catalyst for radical generation and the source of asymmetric induction in C–O coupling. Combined experimental and density functional theory (DFT) computational studies suggest the formation of π-allylcopper complexes from redox-active oxime esters as bifunctional reagents and 1,3-dienes through a radical–polar crossover process.
科研通智能强力驱动
Strongly Powered by AbleSci AI