掺杂剂
钙钛矿(结构)
材料科学
卤化物
纳米技术
光伏系统
碳纤维
工程物理
能量转换效率
化学工程
光电子学
兴奋剂
无机化学
化学
电气工程
工程类
复合材料
复合数
作者
Chen Dong,Bingjie Xu,Dongmei Liu,Erin G. Moloney,Furui Tan,Gentian Yue,Rong Liu,Dongyang Zhang,Weifeng Zhang,Makhsud I. Saidaminov
标识
DOI:10.1016/j.mattod.2021.05.016
摘要
Organic-inorganic hybrid perovskite solar cells (PSCs) are promising next-generation photovoltaic technology. However, their long-term operation is limited due to thermodynamic instability of hybrid perovskites (loss of organics) and severe migration of constituents (ions and dopants). PSCs have to be free of volatile organics and mobile dopants to become commercially relevant. PSCs based on cesium lead halide inorganic perovskites (CsPbI3−xBrx, x = 0 ~ 3) and a carbon electrode, abbreviated here as C-IPSCs, fulfill these requirements: CsPbI3−xBrx is stable against decomposition to binary halides and the carbon electrode is inherently moisture-resistive and dopant-free. Since the first report of C-IPSCs in 2016, their power conversion efficiencies (PCEs) have doubled, recently reaching 14.84% with an astonishing stability of over 2000 h at 80 °C and 80% relative humidity (RH). Here we review recent progress of C-IPSCs and analyze the remaining critical issues in the field. We then offer our perspective to address these challenges through morphology, interface, spectral and material engineering. Finally, we argue that C-IPSCs have potential to overcome the 20% efficiency milestone, making them – in combination with their already impressive stability – the most promising PSC architecture for commercialization.
科研通智能强力驱动
Strongly Powered by AbleSci AI