A Novel Twitter Spam Detection Technique by Integrating Inception Network with Attention based LSTM

计算机科学 人气 人工智能 分类器(UML) 机器学习 垃圾邮件程序 论坛垃圾邮件 垃圾邮件 文字嵌入 社会化媒体 文字袋模型 背景(考古学) F1得分 情报检索 万维网 嵌入 互联网 生物 社会心理学 古生物学 心理学
作者
M. Neha,Madhu S. Nair
标识
DOI:10.1109/icoei51242.2021.9452825
摘要

Online Social Networking sites have become a well-known way for web surfers to connect and meet. Twitter got to be a well-known micro blogging site that clients post and associate with messages known as tweets. As this networking site gains its popularity, spammers target Twitter to spread spam posts. Hence, several spam detection techniques have been proposed by analysts to create Twitter a spam-free stage. Be that as it may, the accessible machine learning algorithms cannot effectively distin- guish spammers on Twitter because of reasonable information controls by unsolicited clients to elude spam discovery. As a result, here, we present an incipient approach predicated on a deep learning technique that leverages a text-predicated feature to detect spammers. A novel architecture that contains a one-dimensional dimension reduction inception module stacked with LSTM along with an attention layer is introduced here. Within the proposed model, the inception module extricates the features from the vectors after GloVe word embedding, and then LSTM is utilized to get the context representations. An Attention layer is also used in this model to give attention to the data outputted from LSTM module. At long last, the sigmoid classifier is utilized to classify the labels as spam or ham. Here, the execution of our proposed model is compared with four machine learning-based and two deep learning-based approaches, exhibiting our approach acquired the best results with an F1-score of 95.74, accuracy of 95.75, and precision of 95.58.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lumi完成签到,获得积分20
1秒前
清都绛阙发布了新的文献求助30
2秒前
2秒前
留猪发布了新的文献求助10
3秒前
霖槿完成签到,获得积分10
4秒前
乐观的涵柳完成签到 ,获得积分10
5秒前
喜悦秋白发布了新的文献求助10
7秒前
7秒前
罗红豆发布了新的文献求助10
7秒前
夏炖鱿鱼完成签到,获得积分20
8秒前
9秒前
月墨雪发布了新的文献求助10
9秒前
lgx驳回了大模型应助
10秒前
12秒前
12秒前
15秒前
16秒前
Bakercat发布了新的文献求助10
17秒前
大个应助辛夷采纳,获得30
18秒前
20秒前
Yifan2024应助vanshaw.vs采纳,获得10
20秒前
烧烤店在逃花肉完成签到 ,获得积分10
20秒前
20秒前
21秒前
23秒前
23秒前
安详靖巧发布了新的文献求助10
23秒前
忧心的往事完成签到,获得积分10
24秒前
小凉完成签到 ,获得积分10
26秒前
fyujin发布了新的文献求助10
26秒前
ranlan发布了新的文献求助10
27秒前
luciansci完成签到 ,获得积分10
28秒前
28秒前
Hello应助ML采纳,获得10
29秒前
张Z发布了新的文献求助10
29秒前
昏睡小吕完成签到,获得积分10
29秒前
星辰大海应助ukmy采纳,获得10
31秒前
31秒前
victor完成签到,获得积分10
31秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466497
求助须知:如何正确求助?哪些是违规求助? 3059297
关于积分的说明 9065872
捐赠科研通 2749797
什么是DOI,文献DOI怎么找? 1508699
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696838