A Novel Twitter Spam Detection Technique by Integrating Inception Network with Attention based LSTM

计算机科学 人气 人工智能 分类器(UML) 机器学习 垃圾邮件程序 论坛垃圾邮件 垃圾邮件 文字嵌入 社会化媒体 文字袋模型 背景(考古学) F1得分 情报检索 万维网 嵌入 互联网 心理学 社会心理学 古生物学 生物
作者
M. Neha,Madhu S. Nair
标识
DOI:10.1109/icoei51242.2021.9452825
摘要

Online Social Networking sites have become a well-known way for web surfers to connect and meet. Twitter got to be a well-known micro blogging site that clients post and associate with messages known as tweets. As this networking site gains its popularity, spammers target Twitter to spread spam posts. Hence, several spam detection techniques have been proposed by analysts to create Twitter a spam-free stage. Be that as it may, the accessible machine learning algorithms cannot effectively distin- guish spammers on Twitter because of reasonable information controls by unsolicited clients to elude spam discovery. As a result, here, we present an incipient approach predicated on a deep learning technique that leverages a text-predicated feature to detect spammers. A novel architecture that contains a one-dimensional dimension reduction inception module stacked with LSTM along with an attention layer is introduced here. Within the proposed model, the inception module extricates the features from the vectors after GloVe word embedding, and then LSTM is utilized to get the context representations. An Attention layer is also used in this model to give attention to the data outputted from LSTM module. At long last, the sigmoid classifier is utilized to classify the labels as spam or ham. Here, the execution of our proposed model is compared with four machine learning-based and two deep learning-based approaches, exhibiting our approach acquired the best results with an F1-score of 95.74, accuracy of 95.75, and precision of 95.58.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
siren发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
7秒前
七曜发布了新的文献求助10
10秒前
许睿发布了新的文献求助10
11秒前
Leoniko发布了新的文献求助10
11秒前
yueeliang发布了新的文献求助10
11秒前
万能图书馆应助NovaZ采纳,获得10
11秒前
VISSUA完成签到,获得积分10
11秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
13秒前
wdy111应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Hello应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
14秒前
15秒前
忧虑的思远完成签到,获得积分10
16秒前
16秒前
李健的粉丝团团长应助yeye采纳,获得10
17秒前
CHRIS发布了新的文献求助10
19秒前
19秒前
李健发布了新的文献求助10
20秒前
22秒前
xbo完成签到,获得积分10
23秒前
23秒前
飘逸的天佑完成签到 ,获得积分20
23秒前
sxhdxwf关注了科研通微信公众号
23秒前
24秒前
25秒前
孙福禄应助CHRIS采纳,获得10
27秒前
孙福禄应助CHRIS采纳,获得10
27秒前
28秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176