A Novel Twitter Spam Detection Technique by Integrating Inception Network with Attention based LSTM

计算机科学 人气 人工智能 分类器(UML) 机器学习 垃圾邮件程序 论坛垃圾邮件 垃圾邮件 文字嵌入 社会化媒体 文字袋模型 背景(考古学) F1得分 情报检索 万维网 嵌入 互联网 生物 社会心理学 古生物学 心理学
作者
M. Neha,Madhu S. Nair
标识
DOI:10.1109/icoei51242.2021.9452825
摘要

Online Social Networking sites have become a well-known way for web surfers to connect and meet. Twitter got to be a well-known micro blogging site that clients post and associate with messages known as tweets. As this networking site gains its popularity, spammers target Twitter to spread spam posts. Hence, several spam detection techniques have been proposed by analysts to create Twitter a spam-free stage. Be that as it may, the accessible machine learning algorithms cannot effectively distin- guish spammers on Twitter because of reasonable information controls by unsolicited clients to elude spam discovery. As a result, here, we present an incipient approach predicated on a deep learning technique that leverages a text-predicated feature to detect spammers. A novel architecture that contains a one-dimensional dimension reduction inception module stacked with LSTM along with an attention layer is introduced here. Within the proposed model, the inception module extricates the features from the vectors after GloVe word embedding, and then LSTM is utilized to get the context representations. An Attention layer is also used in this model to give attention to the data outputted from LSTM module. At long last, the sigmoid classifier is utilized to classify the labels as spam or ham. Here, the execution of our proposed model is compared with four machine learning-based and two deep learning-based approaches, exhibiting our approach acquired the best results with an F1-score of 95.74, accuracy of 95.75, and precision of 95.58.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
炒栗子发布了新的文献求助10
1秒前
1秒前
烂漫念柏发布了新的文献求助10
3秒前
怕黑的井完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6.1应助高贵觅风采纳,获得30
6秒前
清脆泥猴桃完成签到,获得积分10
6秒前
ccy发布了新的文献求助10
6秒前
xiaozhang完成签到,获得积分10
6秒前
sakiecon完成签到,获得积分10
7秒前
8秒前
纯真哈密瓜完成签到 ,获得积分20
8秒前
郑匕完成签到,获得积分10
8秒前
鄙视注册完成签到,获得积分0
9秒前
小夏饭桶完成签到,获得积分10
10秒前
zhenzhangfynu完成签到,获得积分10
11秒前
烟花应助邵邵采纳,获得10
11秒前
Ava应助炒栗子采纳,获得10
12秒前
忍冬半夏完成签到,获得积分10
13秒前
13秒前
郑匕发布了新的文献求助10
14秒前
完美世界应助清秀的沉鱼采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
酷波er应助Ray采纳,获得10
16秒前
16秒前
18秒前
19秒前
小马甲应助Angel采纳,获得10
20秒前
looklook完成签到 ,获得积分10
20秒前
Jasper应助Tac1采纳,获得10
20秒前
sxl完成签到,获得积分10
23秒前
24秒前
霍霍完成签到,获得积分10
26秒前
27秒前
27秒前
二两橙子应助齐小齐采纳,获得10
28秒前
李昕123完成签到 ,获得积分10
29秒前
平常的惜天完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722