A CNN-Based Self-Supervised Synthetic Aperture Radar Image Denoising Approach

计算机科学 人工智能 降噪 合成孔径雷达 稳健性(进化) 卷积神经网络 计算机视觉 噪音(视频) 视频去噪 模式识别(心理学) 深度学习 图像(数学) 视频处理 基因 生物化学 多视点视频编码 化学 视频跟踪
作者
Shen Tan,Xin Zhang,Han Wang,Le Yu,Yanlei Du,Junjun Yin,Bingfang Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:19
标识
DOI:10.1109/tgrs.2021.3104807
摘要

Synthetic aperture radar (SAR) plays an essential role in earth observation and projection due to its capability to penetrate clouds, which makes it possible to monitor terrestrial surfaces under all weather conditions. Multiplicative noise often occurs in the SAR signal, hampering the retrieval of information from SAR imagery. Convolutional neural networks (CNNs) have been used in many computer vision tasks and are helpful in image denoising. However, current CNN-based denoising approaches inevitably lead to a ``washed out'' effect that loses spatial details. Another limitation is that most typical CNN-based denoising models require a noise-free image for training. To address these issues, we propose a novel end-to-end self-supervised SAR denoising model: Enhanced Noise2Noise (EN2N), which can be trained without a noise-free image. To enhance the quality of the result images, the perceptual features from a pre-learned CNN are introduced to restore the spatial details by a hybrid loss function. Experiments show that our proposed method outperforms the typical denoising methods in terms of noise reduction and feature preservation based on image quality metrics. Also, the new hybrid loss could enhance the spatial details significantly. The good performance maintains the robustness throughout time, which reduces the uncertainty in time-series SAR caused by random noise. Benefiting from optimization of graphics processing unit (GPU) and multi-threading, the proposed method has higher computation efficiency than traditional methods. This study demonstrates the great potential of using our self-supervised deep learning approaches for SAR image denoising in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Summer采纳,获得10
刚刚
刚刚
四喜丸子完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
谢显龙完成签到,获得积分10
2秒前
4秒前
GS完成签到,获得积分10
4秒前
Erin完成签到,获得积分10
6秒前
西北望发布了新的文献求助10
7秒前
7秒前
bob发布了新的文献求助10
7秒前
SciGPT应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得30
8秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得30
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
毛豆应助勤劳的摇伽采纳,获得10
9秒前
10秒前
施含莲发布了新的文献求助10
11秒前
越努力 越幸运完成签到,获得积分10
12秒前
5165asd完成签到,获得积分20
12秒前
12秒前
13秒前
Tom完成签到,获得积分10
15秒前
cdercder应助nana采纳,获得30
15秒前
15秒前
健康发布了新的文献求助10
16秒前
16秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433920
求助须知:如何正确求助?哪些是违规求助? 3031041
关于积分的说明 8940816
捐赠科研通 2719088
什么是DOI,文献DOI怎么找? 1491638
科研通“疑难数据库(出版商)”最低求助积分说明 689350
邀请新用户注册赠送积分活动 685511