已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dimensionality Reduction and Classification of Hyperspectral Image via Multistructure Unified Discriminative Embedding

判别式 模式识别(心理学) 人工智能 降维 仿射变换 计算机科学 高光谱成像 数学 嵌入 上下文图像分类 图像(数学) 纯数学
作者
Fulin Luo,Zehua Zou,Jiamin Liu,Zhiping Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:123
标识
DOI:10.1109/tgrs.2021.3128764
摘要

Graph can achieve good performance to extract the low-dimensional features of hyperspectral image (HSI). However, the present graph-based methods just consider the individual information of each sample in a certain characteristic, which is very difficult to represent the intrinsic properties of HSI for the complex imaging condition. To better represent the low-dimensional features of HSI, we propose a multistructure unified discriminative embedding (MUDE) method, which considers the neighborhood, tangential, and statistical properties of each sample in HSI to achieve the complementarity of different characteristics. In MUDE, we design the intraclass and interclass neighborhood structure graphs with the local reconstruction structure of each sample; meanwhile, we also utilize the adaptive tangential affine combination structure to construct the intraclass and interclass tangential structure graphs. To further enhance the discriminating performance between different classes, we consider the influence of the statistical distribution difference for each sample to develop an interclass Gaussian weighted scatter model. Then, an embedding objective function is constructed to enhance the intraclass compactness and the interclass separability and obtain more discriminative features for HSI classification. Experiments on three real HSI datasets show that the proposed method can make full use of the structure information of each sample in different characteristics to achieve the complementarity of different features and improve the classification performance of HSI compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助阿九采纳,获得10
1秒前
bigbigfox完成签到,获得积分10
3秒前
所所应助基金中中中采纳,获得10
4秒前
wanci应助puke采纳,获得10
5秒前
Ftucyctucutct完成签到,获得积分10
5秒前
灶灶发布了新的文献求助10
6秒前
6秒前
7秒前
钮傲白完成签到,获得积分10
7秒前
李爱国应助清爽灰狼采纳,获得10
9秒前
yangr完成签到,获得积分20
11秒前
炸鸡腿完成签到,获得积分10
11秒前
丘比特应助kekefefe采纳,获得10
11秒前
11秒前
蘑菇头完成签到 ,获得积分10
14秒前
1667475537关注了科研通微信公众号
17秒前
科研通AI2S应助hehe采纳,获得10
18秒前
19秒前
20秒前
20秒前
20秒前
21秒前
21秒前
愉快的老五完成签到,获得积分20
22秒前
彭于晏应助小瓶子采纳,获得10
23秒前
25秒前
puke发布了新的文献求助10
25秒前
玥月发布了新的文献求助10
25秒前
调研昵称发布了新的文献求助10
26秒前
kekefefe发布了新的文献求助10
27秒前
鲲kun发布了新的文献求助10
29秒前
赘婿应助灶灶采纳,获得10
30秒前
30秒前
P88JNG完成签到,获得积分10
30秒前
细心飞鸟发布了新的文献求助10
31秒前
31秒前
32秒前
半山完成签到 ,获得积分10
32秒前
开放金鱼完成签到,获得积分20
32秒前
Jasper应助P88JNG采纳,获得10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150321
求助须知:如何正确求助?哪些是违规求助? 2801489
关于积分的说明 7844908
捐赠科研通 2458975
什么是DOI,文献DOI怎么找? 1308883
科研通“疑难数据库(出版商)”最低求助积分说明 628582
版权声明 601727