Dimensionality Reduction and Classification of Hyperspectral Image via Multistructure Unified Discriminative Embedding

判别式 模式识别(心理学) 人工智能 降维 仿射变换 计算机科学 高光谱成像 数学 嵌入 上下文图像分类 图像(数学) 纯数学
作者
Fulin Luo,Zehua Zou,Jiamin Liu,Zhiping Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:123
标识
DOI:10.1109/tgrs.2021.3128764
摘要

Graph can achieve good performance to extract the low-dimensional features of hyperspectral image (HSI). However, the present graph-based methods just consider the individual information of each sample in a certain characteristic, which is very difficult to represent the intrinsic properties of HSI for the complex imaging condition. To better represent the low-dimensional features of HSI, we propose a multistructure unified discriminative embedding (MUDE) method, which considers the neighborhood, tangential, and statistical properties of each sample in HSI to achieve the complementarity of different characteristics. In MUDE, we design the intraclass and interclass neighborhood structure graphs with the local reconstruction structure of each sample; meanwhile, we also utilize the adaptive tangential affine combination structure to construct the intraclass and interclass tangential structure graphs. To further enhance the discriminating performance between different classes, we consider the influence of the statistical distribution difference for each sample to develop an interclass Gaussian weighted scatter model. Then, an embedding objective function is constructed to enhance the intraclass compactness and the interclass separability and obtain more discriminative features for HSI classification. Experiments on three real HSI datasets show that the proposed method can make full use of the structure information of each sample in different characteristics to achieve the complementarity of different features and improve the classification performance of HSI compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BOLIN完成签到,获得积分10
刚刚
wenbin完成签到,获得积分10
1秒前
芋头读文献完成签到,获得积分10
2秒前
曲艺完成签到,获得积分10
3秒前
李治海完成签到,获得积分10
4秒前
4秒前
6秒前
leo完成签到,获得积分10
6秒前
小心科研完成签到,获得积分10
8秒前
8秒前
打地鼠工人完成签到,获得积分10
9秒前
鸭子完成签到,获得积分10
9秒前
秦时明月完成签到,获得积分10
9秒前
研友Bn完成签到 ,获得积分10
10秒前
蓉儿完成签到 ,获得积分10
10秒前
星辰大海应助无所谓的啦采纳,获得10
10秒前
香蕉觅云应助无所谓的啦采纳,获得10
10秒前
ganjqly完成签到,获得积分10
12秒前
12秒前
dream完成签到 ,获得积分10
13秒前
jj完成签到,获得积分10
14秒前
爱笑子默完成签到 ,获得积分10
15秒前
半颗橙子完成签到 ,获得积分10
15秒前
玺月洛离完成签到,获得积分10
16秒前
波里舞完成签到 ,获得积分10
18秒前
Pakben完成签到,获得积分10
20秒前
李治海发布了新的文献求助10
20秒前
风清扬应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
十二应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
Nick应助科研通管家采纳,获得10
20秒前
十二应助科研通管家采纳,获得10
20秒前
Coraline应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
21秒前
Q清风慕竹应助科研通管家采纳,获得50
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960190
求助须知:如何正确求助?哪些是违规求助? 3506348
关于积分的说明 11129231
捐赠科研通 3238527
什么是DOI,文献DOI怎么找? 1789763
邀请新用户注册赠送积分活动 871900
科研通“疑难数据库(出版商)”最低求助积分说明 803095