磷烯
PMOS逻辑
电子迁移率
材料科学
石墨烯
NMOS逻辑
黑磷
场效应晶体管
晶体管
半导体
带隙
纳米技术
光电子学
电压
物理
量子力学
作者
Han Liu,Adam T. Neal,Zhen Zhu,Zhe Luo,Xianfan Xu,David Tománek,Peide D. Ye
出处
期刊:ACS Nano
[American Chemical Society]
日期:2014-03-17
卷期号:8 (4): 4033-4041
被引量:5911
摘要
We introduce the 2D counterpart of layered black phosphorus, which we call phosphorene, as an unexplored p-type semiconducting material. Same as graphene and MoS2, single-layer phosphorene is flexible and can be mechanically exfoliated. We find phosphorene to be stable and, unlike graphene, to have an inherent, direct, and appreciable band gap. Our ab initio calculations indicate that the band gap is direct, depends on the number of layers and the in-layer strain, and is significantly larger than the bulk value of 0.31–0.36 eV. The observed photoluminescence peak of single-layer phosphorene in the visible optical range confirms that the band gap is larger than that of the bulk system. Our transport studies indicate a hole mobility that reflects the structural anisotropy of phosphorene and complements n-type MoS2. At room temperature, our few-layer phosphorene field-effect transistors with 1.0 μm channel length display a high on-current of 194 mA/mm, a high hole field-effect mobility of 286 cm2/V·s, and an on/off ratio of up to 104. We demonstrate the possibility of phosphorene integration by constructing a 2D CMOS inverter consisting of phosphorene PMOS and MoS2 NMOS transistors.
科研通智能强力驱动
Strongly Powered by AbleSci AI