Differentiation of Lung Metastases Originated From Different Primary Tumors Using Radiomics Features Based on CT Imaging

医学 结直肠癌 乳腺癌 Lasso(编程语言) 接收机工作特性 肾细胞癌 无线电技术 肺癌 癌症 队列 放射科 肿瘤科 内科学 计算机科学 万维网
作者
Shang Hui,Jizhen Li,Tianyu Jiao,Caiyun Fang,Kejian Li,Di Yin,Qingshi Zeng
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (1): 40-46 被引量:10
标识
DOI:10.1016/j.acra.2022.04.008
摘要

To explore the feasibility of differentiating three predominant metastatic tumor types using lung computed tomography (CT) radiomics features based on supervised machine learning.This retrospective analysis included 252 lung metastases (LM) (from 78 patients), which were divided into the training (n = 176) and test (n = 76) cohort randomly. The metastases originated from colorectal cancer (n = 97), breast cancer (n = 87), and renal carcinoma (n = 68). An additional 77 LM (from 35 patients) were used for external validation. All radiomics features were extracted from lung CT using an open-source software called 3D slicer. The least absolute shrinkage and selection operator (LASSO) method selected the optimal radiomics features to build the model. Random forest and support vector machine (SVM) were selected to build three-class and two-class models. The performance of the classification model was evaluated with the area under the receiver operating characteristic curve (AUC) by two strategies: one-versus-rest and one-versus-one.Eight hundred and fifty-one quantitative radiomics features were extracted from lung CT. By LASSO, 23 optimal features were extracted in three-class, and 25, 29, and 35 features in two-class for differentiating every two of three LM (colorectal cancer vs. renal carcinoma, colorectal cancer vs. breast cancer, and breast cancer vs. renal carcinoma, respectively). The AUCs of the three-class model were 0.83 for colorectal cancer, 0.79 for breast cancer, and 0.91 for renal carcinoma in the test cohort. In the external validation cohort, the AUCs were 0.77, 0.83, and 0.81, respectively. Swarmplot shows the distribution of radiomics features among three different LM types. In the two-class model, high accuracy and AUC were obtained by SVM. The AUC of discriminating colorectal cancer LM from renal carcinoma LM was 0.84, and breast cancer LM from colorectal cancer LM and renal carcinoma LM were 0.80 and 0.94, respectively. The AUCs were 0.77, 0.78, and 0.84 in the external validation cohort.Quantitative radiomics features based on Lung CT exhibited good discriminative performance in LM of primary colorectal cancer, breast cancer, and renal carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
尹静涵完成签到 ,获得积分10
1秒前
st完成签到 ,获得积分10
1秒前
星辰大海应助XYN1采纳,获得10
1秒前
CipherSage应助小草采纳,获得10
1秒前
Z.one发布了新的文献求助10
3秒前
每天都是新的一天完成签到,获得积分10
4秒前
沉默乌完成签到,获得积分10
5秒前
st关注了科研通微信公众号
6秒前
7秒前
8秒前
大模型应助Z.one采纳,获得10
8秒前
8秒前
Dxy-TOFA完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
xiaozhang发布了新的文献求助10
13秒前
蔡从安发布了新的文献求助10
14秒前
星辰大海应助132采纳,获得10
14秒前
大气的画板完成签到 ,获得积分10
16秒前
为溪发布了新的文献求助30
16秒前
16秒前
17秒前
17秒前
小草发布了新的文献求助10
17秒前
赘婿应助灿烂千阳采纳,获得10
19秒前
快乐小蜜蜂应助王优秀采纳,获得10
19秒前
20秒前
pluto应助动听的泥猴桃采纳,获得10
20秒前
cai发布了新的文献求助10
21秒前
科研通AI2S应助蔡从安采纳,获得10
21秒前
丘比特应助独特的高山采纳,获得10
22秒前
为溪完成签到,获得积分10
22秒前
隐形曼青应助时尚凡雁采纳,获得10
23秒前
科研通AI2S应助斯人采纳,获得10
25秒前
深情安青应助碳土不凡采纳,获得10
25秒前
Orange应助抓到你啦采纳,获得10
25秒前
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260808
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318098
捐赠科研通 2571665
什么是DOI,文献DOI怎么找? 1397111
科研通“疑难数据库(出版商)”最低求助积分说明 653655
邀请新用户注册赠送积分活动 632178