Differentiation of Lung Metastases Originated From Different Primary Tumors Using Radiomics Features Based on CT Imaging

医学 结直肠癌 乳腺癌 Lasso(编程语言) 接收机工作特性 肾细胞癌 无线电技术 肺癌 癌症 队列 放射科 肿瘤科 内科学 计算机科学 万维网
作者
Hui Shang,Jizhen Li,Tianyu Jiao,Caiyun Fang,Kejian Li,Di Yin,Qingshi Zeng
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (1): 40-46 被引量:11
标识
DOI:10.1016/j.acra.2022.04.008
摘要

To explore the feasibility of differentiating three predominant metastatic tumor types using lung computed tomography (CT) radiomics features based on supervised machine learning.This retrospective analysis included 252 lung metastases (LM) (from 78 patients), which were divided into the training (n = 176) and test (n = 76) cohort randomly. The metastases originated from colorectal cancer (n = 97), breast cancer (n = 87), and renal carcinoma (n = 68). An additional 77 LM (from 35 patients) were used for external validation. All radiomics features were extracted from lung CT using an open-source software called 3D slicer. The least absolute shrinkage and selection operator (LASSO) method selected the optimal radiomics features to build the model. Random forest and support vector machine (SVM) were selected to build three-class and two-class models. The performance of the classification model was evaluated with the area under the receiver operating characteristic curve (AUC) by two strategies: one-versus-rest and one-versus-one.Eight hundred and fifty-one quantitative radiomics features were extracted from lung CT. By LASSO, 23 optimal features were extracted in three-class, and 25, 29, and 35 features in two-class for differentiating every two of three LM (colorectal cancer vs. renal carcinoma, colorectal cancer vs. breast cancer, and breast cancer vs. renal carcinoma, respectively). The AUCs of the three-class model were 0.83 for colorectal cancer, 0.79 for breast cancer, and 0.91 for renal carcinoma in the test cohort. In the external validation cohort, the AUCs were 0.77, 0.83, and 0.81, respectively. Swarmplot shows the distribution of radiomics features among three different LM types. In the two-class model, high accuracy and AUC were obtained by SVM. The AUC of discriminating colorectal cancer LM from renal carcinoma LM was 0.84, and breast cancer LM from colorectal cancer LM and renal carcinoma LM were 0.80 and 0.94, respectively. The AUCs were 0.77, 0.78, and 0.84 in the external validation cohort.Quantitative radiomics features based on Lung CT exhibited good discriminative performance in LM of primary colorectal cancer, breast cancer, and renal carcinoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dorren完成签到,获得积分10
1秒前
十米完成签到 ,获得积分10
1秒前
2秒前
沉沉完成签到 ,获得积分0
2秒前
星期五应助科研通管家采纳,获得10
7秒前
Xiaoxiao应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Wind应助wwl采纳,获得10
9秒前
科研通AI2S应助单薄映易采纳,获得10
9秒前
11秒前
甜屁儿完成签到 ,获得积分10
11秒前
ECHO完成签到,获得积分10
12秒前
anz完成签到 ,获得积分10
12秒前
LIJIngcan完成签到 ,获得积分10
14秒前
黎黎原上草完成签到,获得积分10
16秒前
水云发布了新的文献求助10
17秒前
迷路绮南完成签到 ,获得积分10
18秒前
dingtao发布了新的文献求助80
19秒前
又又完成签到 ,获得积分10
20秒前
yinyin完成签到 ,获得积分10
22秒前
王旭东完成签到 ,获得积分10
23秒前
南风完成签到 ,获得积分10
23秒前
splemeth完成签到,获得积分10
24秒前
无私的电灯胆完成签到,获得积分10
27秒前
朱朱完成签到 ,获得积分10
27秒前
ll完成签到 ,获得积分10
27秒前
坚强的铅笔完成签到 ,获得积分10
28秒前
資鼒完成签到 ,获得积分10
29秒前
。。完成签到 ,获得积分10
31秒前
sunnyqqz完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
32秒前
宜菏发布了新的文献求助10
32秒前
32秒前
吉以寒完成签到,获得积分10
39秒前
Gu0F1完成签到 ,获得积分10
40秒前
花卷完成签到,获得积分10
40秒前
40秒前
董老师完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086