已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differentiation of Lung Metastases Originated From Different Primary Tumors Using Radiomics Features Based on CT Imaging

医学 结直肠癌 乳腺癌 Lasso(编程语言) 接收机工作特性 肾细胞癌 无线电技术 肺癌 癌症 队列 放射科 肿瘤科 内科学 计算机科学 万维网
作者
Hui Shang,Jizhen Li,Tianyu Jiao,Caiyun Fang,Kejian Li,Di Yin,Qingshi Zeng
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (1): 40-46 被引量:11
标识
DOI:10.1016/j.acra.2022.04.008
摘要

To explore the feasibility of differentiating three predominant metastatic tumor types using lung computed tomography (CT) radiomics features based on supervised machine learning.This retrospective analysis included 252 lung metastases (LM) (from 78 patients), which were divided into the training (n = 176) and test (n = 76) cohort randomly. The metastases originated from colorectal cancer (n = 97), breast cancer (n = 87), and renal carcinoma (n = 68). An additional 77 LM (from 35 patients) were used for external validation. All radiomics features were extracted from lung CT using an open-source software called 3D slicer. The least absolute shrinkage and selection operator (LASSO) method selected the optimal radiomics features to build the model. Random forest and support vector machine (SVM) were selected to build three-class and two-class models. The performance of the classification model was evaluated with the area under the receiver operating characteristic curve (AUC) by two strategies: one-versus-rest and one-versus-one.Eight hundred and fifty-one quantitative radiomics features were extracted from lung CT. By LASSO, 23 optimal features were extracted in three-class, and 25, 29, and 35 features in two-class for differentiating every two of three LM (colorectal cancer vs. renal carcinoma, colorectal cancer vs. breast cancer, and breast cancer vs. renal carcinoma, respectively). The AUCs of the three-class model were 0.83 for colorectal cancer, 0.79 for breast cancer, and 0.91 for renal carcinoma in the test cohort. In the external validation cohort, the AUCs were 0.77, 0.83, and 0.81, respectively. Swarmplot shows the distribution of radiomics features among three different LM types. In the two-class model, high accuracy and AUC were obtained by SVM. The AUC of discriminating colorectal cancer LM from renal carcinoma LM was 0.84, and breast cancer LM from colorectal cancer LM and renal carcinoma LM were 0.80 and 0.94, respectively. The AUCs were 0.77, 0.78, and 0.84 in the external validation cohort.Quantitative radiomics features based on Lung CT exhibited good discriminative performance in LM of primary colorectal cancer, breast cancer, and renal carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liangyong_Fu完成签到 ,获得积分10
刚刚
庾新竹发布了新的文献求助10
1秒前
领导范儿应助隐形不言采纳,获得10
2秒前
gaoyayaaa完成签到,获得积分10
4秒前
苏乘风发布了新的文献求助10
4秒前
抹宁发布了新的文献求助10
4秒前
12秒前
13秒前
然然完成签到,获得积分10
18秒前
18秒前
Lucas应助菜根谭采纳,获得10
20秒前
整齐凝竹完成签到 ,获得积分10
21秒前
22秒前
衣裳薄完成签到,获得积分10
24秒前
24秒前
gaoyayaaa发布了新的文献求助10
24秒前
24秒前
24秒前
沉静的冥幽完成签到,获得积分10
25秒前
26秒前
SDUMoist发布了新的文献求助10
28秒前
缓慢飞松完成签到 ,获得积分10
28秒前
无辜的秀发布了新的文献求助10
29秒前
花痴的手套完成签到 ,获得积分10
30秒前
31秒前
32秒前
芋泥红豆椰椰完成签到,获得积分10
33秒前
英俊的铭应助无辜的秀采纳,获得10
35秒前
WYF发布了新的文献求助10
35秒前
36秒前
36秒前
37秒前
哈哈哈发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助10
38秒前
40秒前
lgy完成签到,获得积分10
43秒前
Yesyes发布了新的文献求助10
43秒前
WYF关闭了WYF文献求助
44秒前
vicky发布了新的文献求助10
44秒前
生动宛筠发布了新的文献求助10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021