Differentiation of Lung Metastases Originated From Different Primary Tumors Using Radiomics Features Based on CT Imaging

医学 结直肠癌 乳腺癌 Lasso(编程语言) 接收机工作特性 肾细胞癌 无线电技术 肺癌 癌症 队列 放射科 肿瘤科 内科学 计算机科学 万维网
作者
Hui Shang,Jizhen Li,Tianyu Jiao,Caiyun Fang,Kejian Li,Di Yin,Qingshi Zeng
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (1): 40-46 被引量:11
标识
DOI:10.1016/j.acra.2022.04.008
摘要

To explore the feasibility of differentiating three predominant metastatic tumor types using lung computed tomography (CT) radiomics features based on supervised machine learning.This retrospective analysis included 252 lung metastases (LM) (from 78 patients), which were divided into the training (n = 176) and test (n = 76) cohort randomly. The metastases originated from colorectal cancer (n = 97), breast cancer (n = 87), and renal carcinoma (n = 68). An additional 77 LM (from 35 patients) were used for external validation. All radiomics features were extracted from lung CT using an open-source software called 3D slicer. The least absolute shrinkage and selection operator (LASSO) method selected the optimal radiomics features to build the model. Random forest and support vector machine (SVM) were selected to build three-class and two-class models. The performance of the classification model was evaluated with the area under the receiver operating characteristic curve (AUC) by two strategies: one-versus-rest and one-versus-one.Eight hundred and fifty-one quantitative radiomics features were extracted from lung CT. By LASSO, 23 optimal features were extracted in three-class, and 25, 29, and 35 features in two-class for differentiating every two of three LM (colorectal cancer vs. renal carcinoma, colorectal cancer vs. breast cancer, and breast cancer vs. renal carcinoma, respectively). The AUCs of the three-class model were 0.83 for colorectal cancer, 0.79 for breast cancer, and 0.91 for renal carcinoma in the test cohort. In the external validation cohort, the AUCs were 0.77, 0.83, and 0.81, respectively. Swarmplot shows the distribution of radiomics features among three different LM types. In the two-class model, high accuracy and AUC were obtained by SVM. The AUC of discriminating colorectal cancer LM from renal carcinoma LM was 0.84, and breast cancer LM from colorectal cancer LM and renal carcinoma LM were 0.80 and 0.94, respectively. The AUCs were 0.77, 0.78, and 0.84 in the external validation cohort.Quantitative radiomics features based on Lung CT exhibited good discriminative performance in LM of primary colorectal cancer, breast cancer, and renal carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实的小懒虫完成签到,获得积分10
1秒前
hebishan完成签到,获得积分10
2秒前
cjchem发布了新的文献求助10
3秒前
无花果应助边走边听采纳,获得10
4秒前
4秒前
4秒前
无花果应助feifeifei采纳,获得10
4秒前
开放如天完成签到 ,获得积分10
5秒前
laber应助fangfeng采纳,获得50
5秒前
搜集达人应助三峡好人采纳,获得10
5秒前
5秒前
6秒前
852应助海上钢琴家采纳,获得10
6秒前
luo发布了新的文献求助10
6秒前
6秒前
大个应助追尾的猫采纳,获得10
7秒前
CodeCraft应助闪闪的大炮采纳,获得10
8秒前
科研通AI6应助何小明采纳,获得10
8秒前
顾矜应助Flora采纳,获得10
8秒前
慕青应助奥丁蒂法采纳,获得10
8秒前
芫华发布了新的文献求助10
9秒前
10秒前
科研通AI6应助迷路的曼凡采纳,获得30
10秒前
照相机发布了新的文献求助10
10秒前
万能图书馆应助鲤鱼山人采纳,获得10
11秒前
11秒前
12秒前
抗氧剂完成签到,获得积分10
12秒前
lvlv发布了新的文献求助30
12秒前
cjchem完成签到,获得积分10
12秒前
12秒前
12秒前
螺蛳粉完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
597发布了新的文献求助10
13秒前
14秒前
14秒前
Miya完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824