材料科学
复合材料
纳米片
弹性体
碳纳米管
共形矩阵
电极
电介质
涂层
纳米技术
光电子学
物理化学
化学
作者
Tatsuhiro Horii,Kei Okada,Toshinori Fujie
标识
DOI:10.1002/aelm.202200165
摘要
Abstract Skin‐contact dielectric elastomer actuators (DEAs) consisting of skin‐conformable, stretchable electrodes are fabricated using a roll‐to‐roll‐based gravure coating method. In this method, single‐walled carbon nanotubes (SWCNTs) are continuously applied on a free‐standing ultra‐thin film (nanosheet) of poly(styrene‐ b ‐butadiene‐ b ‐styrene) (SBS) to produce an SWCNT‐SBS nanosheet of 101‐nm thickness. After the first SWCNT coating, the SWCNT‐SBS nanosheet shows a Young's modulus (i.e., 80.9 MPa) comparable to that of the SBS film and a sheet resistance of 4.6 kΩ sq −1 . Using the free‐standing SWCNT‐SBS nanosheets as electrodes, a ten‐layered DEA is fabricated without glue or dielectric elastomer precursors on three substrates with different stiffness, namely glass, Ecoflex 00–30, and a urethane elastomer model skin. The low flexural rigidity of the ten‐layered DEA (105 nN m) ensures conformability to the shape of an index finger. Application of an actuation voltage of 2100 V produces a two‐fold larger displacement of the DEA on the Ecoflex 00–30 substrate compared with that on the glass substrate. The ability of the DEA to conform to the surface of skin will enable its application in skin‐contact haptic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI