A flexible SDN-based framework for slow-rate DDoS attack mitigation by using deep reinforcement learning

计算机科学 服务拒绝攻击 强化学习 软件定义的网络 可扩展性 入侵检测系统 应用层DDoS攻击 前进飞机 计算机网络 特里诺 计算机安全 人工智能 操作系统 互联网 网络数据包
作者
Noe M. Yungaicela-Naula,Cesar Vargas‐Rosales,Jesús Arturo Pérez Díaz,Diego Fernando Carrera
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:205: 103444-103444 被引量:38
标识
DOI:10.1016/j.jnca.2022.103444
摘要

Distributed Denial-of-Service (DDoS) attacks are difficult to mitigate with existing defense tools. Fortunately, it has been demonstrated that Software-Defined Networking (SDN) with machine learning (ML) and deep learning (DL) techniques has a high potential to handle these threats effectively. However, although there are many SDN-based solutions for detecting DDoS attacks, only a few contain mitigation strategies. Additionally, most previous studies have focused on solving high-rate DDoS attacks. For the time being, recent slow-rate DDoS threats are hard to detect and mitigate. In this work, we propose a modular, flexible, and scalable SDN-based framework that integrates a DL-based intrusion detection system (IDS) and a deep reinforcement learning (DRL)-based intrusion prevention system (IPS) to address slow-rate DDoS threats. We incorporated scalability features into this framework, such as data-plane-based traffic monitoring and traffic flow sampling. Moreover, we have designed a lightweight DRL-based IPS to provide rapid mitigation responses. Furthermore, to evaluate the framework, we deployed a data center network using Mininet, Open Network Operating System (ONOS) controller, and Apache Web server. Next, we performed extensive experiments varying the number of attackers and the rate of attack connections. The proposed IDS achieved an average detection rate of 98%, with a flow sampling rate of 30%. In addition, IPS timely mitigated slow-rate DDoS with 100% of success for a few attackers. Taken together, these results show that the proposed framework provides effective responses to malicious and legitimate connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助张秋雨采纳,获得30
1秒前
1秒前
李超完成签到,获得积分10
1秒前
CipherSage应助Lyuemei采纳,获得10
2秒前
柔弱元瑶发布了新的文献求助10
2秒前
LiS发布了新的文献求助10
2秒前
沉默的冬莲关注了科研通微信公众号
2秒前
2秒前
畅快远山完成签到,获得积分20
3秒前
华仔应助简单灵凡采纳,获得30
3秒前
3秒前
门前海棠依旧完成签到,获得积分10
4秒前
wanluu完成签到,获得积分10
4秒前
瘦瘦一德发布了新的文献求助10
4秒前
WuchangI完成签到,获得积分10
5秒前
5秒前
幽默的尔冬完成签到,获得积分10
5秒前
5秒前
权志龙发布了新的文献求助10
6秒前
你好完成签到,获得积分20
6秒前
7秒前
Owen应助彭煜迪采纳,获得10
7秒前
野性的凌瑶完成签到,获得积分10
7秒前
科研通AI2S应助赵哥采纳,获得10
7秒前
iNk应助搞怪冷风采纳,获得10
7秒前
8秒前
8秒前
happiness发布了新的文献求助10
8秒前
RayLam发布了新的文献求助10
8秒前
leslie发布了新的文献求助20
8秒前
粉鳍完成签到 ,获得积分10
9秒前
9秒前
烟花应助wanluu采纳,获得30
9秒前
9秒前
细腻问柳完成签到 ,获得积分10
9秒前
大白发布了新的文献求助10
10秒前
yhuyfuhk完成签到 ,获得积分10
10秒前
斯文败类应助eternity136采纳,获得10
11秒前
柔弱元瑶完成签到,获得积分20
11秒前
Singularity应助银色的膜采纳,获得10
11秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156574
求助须知:如何正确求助?哪些是违规求助? 2808051
关于积分的说明 7875794
捐赠科研通 2466300
什么是DOI,文献DOI怎么找? 1312843
科研通“疑难数据库(出版商)”最低求助积分说明 630280
版权声明 601919