A flexible SDN-based framework for slow-rate DDoS attack mitigation by using deep reinforcement learning

计算机科学 服务拒绝攻击 强化学习 软件定义的网络 可扩展性 入侵检测系统 应用层DDoS攻击 前进飞机 计算机网络 特里诺 计算机安全 人工智能 操作系统 互联网 网络数据包
作者
Noe M. Yungaicela-Naula,Cesar Vargas‐Rosales,Jesús Arturo Pérez-Díaz,Diego Fernando Carrera
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:205: 103444-103444 被引量:53
标识
DOI:10.1016/j.jnca.2022.103444
摘要

Distributed Denial-of-Service (DDoS) attacks are difficult to mitigate with existing defense tools. Fortunately, it has been demonstrated that Software-Defined Networking (SDN) with machine learning (ML) and deep learning (DL) techniques has a high potential to handle these threats effectively. However, although there are many SDN-based solutions for detecting DDoS attacks, only a few contain mitigation strategies. Additionally, most previous studies have focused on solving high-rate DDoS attacks. For the time being, recent slow-rate DDoS threats are hard to detect and mitigate. In this work, we propose a modular, flexible, and scalable SDN-based framework that integrates a DL-based intrusion detection system (IDS) and a deep reinforcement learning (DRL)-based intrusion prevention system (IPS) to address slow-rate DDoS threats. We incorporated scalability features into this framework, such as data-plane-based traffic monitoring and traffic flow sampling. Moreover, we have designed a lightweight DRL-based IPS to provide rapid mitigation responses. Furthermore, to evaluate the framework, we deployed a data center network using Mininet, Open Network Operating System (ONOS) controller, and Apache Web server. Next, we performed extensive experiments varying the number of attackers and the rate of attack connections. The proposed IDS achieved an average detection rate of 98%, with a flow sampling rate of 30%. In addition, IPS timely mitigated slow-rate DDoS with 100% of success for a few attackers. Taken together, these results show that the proposed framework provides effective responses to malicious and legitimate connections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
刚刚
曾经的白猫完成签到,获得积分20
刚刚
晴晴完成签到,获得积分10
1秒前
上官若男应助QQ采纳,获得10
1秒前
共享精神应助小勇仔采纳,获得10
1秒前
tao完成签到,获得积分10
1秒前
2秒前
Lee发布了新的文献求助10
2秒前
liujiahao完成签到,获得积分10
2秒前
2秒前
大力出奇迹完成签到,获得积分10
3秒前
勤奋天真完成签到 ,获得积分10
3秒前
3秒前
Qinzhiyuan1990完成签到 ,获得积分10
3秒前
铱凡完成签到,获得积分10
4秒前
weeqe完成签到,获得积分10
4秒前
玄机发布了新的文献求助10
4秒前
WATQ完成签到,获得积分10
5秒前
Yangfan发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Mende发布了新的文献求助10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
追寻月饼完成签到,获得积分10
5秒前
lw不好找完成签到 ,获得积分10
5秒前
5秒前
6秒前
老迟到的芹菜完成签到,获得积分10
6秒前
赛特新思完成签到,获得积分10
6秒前
小二郎应助mumian采纳,获得10
6秒前
雪时晴完成签到,获得积分10
6秒前
7秒前
1177完成签到,获得积分10
7秒前
拾柒发布了新的文献求助10
7秒前
7秒前
桐桐应助曾经的白猫采纳,获得10
8秒前
lidm完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006