亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting Ventricular Beats with Machine Learning Models

心跳 计算机科学 特征选择 人工智能 随机森林 试验装置 模式识别(心理学) 机器学习 特征(语言学) 试验数据 数据集 水准点(测量) 分类器(UML) 数据挖掘 人工神经网络 二元分类 训练集 支持向量机 程序设计语言 地理 哲学 语言学 计算机安全 大地测量学
作者
Stojancho Tudjarski,Aleksandar Stankovski,Marjan Gušev
标识
DOI:10.23919/mipro55190.2022.9803758
摘要

This paper aims at modeling a classifier of Ventricular heartbeats by experimenting with the most advanced classic binary classifiers in different scenarios for feature engineering. Methodology: The results were acquired based on experimenting with XGBoost and Random Forest algorithms, as two of the most advanced classifiers not based on neural networks. Although the annotated ECG data sets contain records with several heartbeat classes, we focus on a model that would distinguish V from others (Non-V heartbeats). Considering that we are dealing with a highly imbalanced data set, we applied the SMOTE algorithm for data enrichment to provide a better-balanced data set for training the model. To acquire better results, we added new calculated features, with and without feature selection. For feature selection, we used the Fisher Selector algorithm. Data: We used MIT-BIH Arrhythmia benchmark database, with train/test split according to the patient-oriented splitting approach that separates the original dataset into two subsets with approximately equal sizes and distribution of heartbeat types. Conclusion: The best results are achieved with XGBoost algorithm with original feature set. We achieved precision of 91.36%, recall of 88.31% and F1 score of 89.81%. Results showed that oversampling does not provide significantly better overall model performance. Still, we would recommend this approach since in practice, when dealing with imbalanced data sets, this leads to more robust models that perform better with data outside the training and test sets, such as when the model is used in production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
pengpengyin发布了新的文献求助10
26秒前
咔敏完成签到,获得积分10
34秒前
咔敏发布了新的文献求助10
38秒前
pengpengyin完成签到,获得积分10
45秒前
1分钟前
小二郎应助七安得安采纳,获得30
1分钟前
平常囧完成签到,获得积分10
1分钟前
李健应助跳跃的小之采纳,获得10
1分钟前
2分钟前
2分钟前
火速阿百川完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
奶油蜜豆卷完成签到,获得积分10
2分钟前
浮曳完成签到,获得积分10
2分钟前
iShine完成签到 ,获得积分10
2分钟前
顺心蜜粉发布了新的文献求助10
3分钟前
3分钟前
寻道图强应助顺心蜜粉采纳,获得100
4分钟前
七安得安发布了新的文献求助30
4分钟前
上官若男应助七安得安采纳,获得10
4分钟前
大胆砖头完成签到 ,获得积分10
4分钟前
4分钟前
七安得安发布了新的文献求助10
4分钟前
七安得安完成签到,获得积分10
4分钟前
手可摘星陈同学完成签到 ,获得积分10
5分钟前
5分钟前
黄油小熊完成签到 ,获得积分10
5分钟前
Luke发布了新的文献求助10
5分钟前
盼盼完成签到 ,获得积分10
5分钟前
科研辣鸡发布了新的文献求助10
6分钟前
6分钟前
7分钟前
知悉发布了新的文献求助10
7分钟前
知悉完成签到,获得积分10
7分钟前
samchen完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
科研通AI2S应助btb采纳,获得30
8分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064