Large pre-trained language models contain human-like biases of what is right and wrong to do

计算机科学
作者
Patrick Schramowski,Cigdem Turan,Nico Andersen,Constantin A. Rothkopf,Kristian Kersting
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 258-268 被引量:163
标识
DOI:10.1038/s42256-022-00458-8
摘要

Artificial writing is permeating our lives due to recent advances in large-scale, transformer-based language models (LMs) such as BERT, GPT-2 and GPT-3. Using them as pre-trained models and fine-tuning them for specific tasks, researchers have extended the state of the art for many natural language processing tasks and shown that they capture not only linguistic knowledge but also retain general knowledge implicitly present in the data. Unfortunately, LMs trained on unfiltered text corpora suffer from degenerated and biased behaviour. While this is well established, we show here that recent LMs also contain human-like biases of what is right and wrong to do, reflecting existing ethical and moral norms of society. We show that these norms can be captured geometrically by a ‘moral direction’ which can be computed, for example, by a PCA, in the embedding space. The computed ‘moral direction’ can rate the normativity (or non-normativity) of arbitrary phrases without explicitly training the LM for this task, reflecting social norms well. We demonstrate that computing the ’moral direction’ can provide a path for attenuating or even preventing toxic degeneration in LMs, showcasing this capability on the RealToxicityPrompts testbed. Large language models identify patterns in the relations between words and capture their relations in an embedding space. Schramowski and colleagues show that a direction in this space can be identified that separates ‘right’ and ‘wrong’ actions as judged by human survey participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XSY发布了新的文献求助10
刚刚
漂亮幻莲发布了新的文献求助10
1秒前
思源应助研友_842M4n采纳,获得10
1秒前
abbsdan完成签到 ,获得积分10
1秒前
Owen应助哈哈哈采纳,获得10
2秒前
2秒前
3秒前
3秒前
Ava应助火山蜗牛采纳,获得10
3秒前
3秒前
Pursue完成签到,获得积分10
4秒前
今天不学习明天变垃圾完成签到,获得积分10
4秒前
急急急完成签到,获得积分10
4秒前
牵墨完成签到,获得积分10
5秒前
小康完成签到,获得积分10
5秒前
6秒前
呆萌的雁荷完成签到,获得积分10
6秒前
7秒前
款解耦完成签到 ,获得积分10
7秒前
何hyy发布了新的文献求助10
8秒前
8秒前
preeee关注了科研通微信公众号
8秒前
共享精神应助Agao采纳,获得10
9秒前
小康发布了新的文献求助10
9秒前
小栩完成签到 ,获得积分10
9秒前
零九完成签到,获得积分10
9秒前
XSY完成签到,获得积分10
10秒前
greenf发布了新的文献求助10
10秒前
10秒前
10秒前
如意的尔蝶完成签到,获得积分10
10秒前
远山笑你完成签到 ,获得积分10
10秒前
Singularity举报666求助涉嫌违规
10秒前
萧水白应助余生采纳,获得10
10秒前
苹果柜子应助Liu采纳,获得10
10秒前
11秒前
11秒前
安静问玉关注了科研通微信公众号
11秒前
苻人英发布了新的文献求助10
11秒前
田様应助君无名采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311876
求助须知:如何正确求助?哪些是违规求助? 2944696
关于积分的说明 8520681
捐赠科研通 2620293
什么是DOI,文献DOI怎么找? 1432756
科研通“疑难数据库(出版商)”最低求助积分说明 664759
邀请新用户注册赠送积分活动 650064