Diagnosing Lung And Gastric Cancers Through Exhaled Breath Analysis By Using Electronic Nose Technology Combined With Pattern Recognition Methods

电子鼻 气体分析呼吸 主成分分析 支持向量机 鼻子 线性判别分析 肺癌 癌症 人工智能 模式识别(心理学) 判别函数分析 医学 内科学 计算机科学 机器学习 外科 解剖
作者
Benachir Bouchikhi,Omar Zaim,Nezha El Bari,N Lagdali,I Benelbarhdadi,F.Z. Ajana
标识
DOI:10.1109/sensors47087.2021.9639700
摘要

Lung cancer (LCa) and gastric cancer (GCa) are two of the most lethal cancers worldwide. Unspecific clinical symptoms and the lack of defined risk factors often delay the diagnosis of the disease, which could high the mortality rate. The aim of the present study is to evaluate the capability of an electronic nose (e-nose) based on metal-oxide semi-conductor sensors combined with pattern recognition methods to discriminate between patients groups with LCa, GCa, and healthy controls (HC). Breath samples were collected from 35 volunteers containing 13 HC, 14 LCa, and 8 GCa patients. The e-nose dataset was treated with principal component analysis (PCA), discriminant function analysis (DFA), and support vector machines (SVM). As result, PCA and DFA have shown good discrimination between data-points of breath samples related to HC, LCa and GCa patients. The SVMs method reached a 100% success rate for the recognition of the analyzed three groups. In the light of these results, we can state that the presented e-nose system demonstrates that an inexpensive and non-invasive approach based on exhaled breath analysis could be considered a reliable screening tool to differentiate between the three studied groups.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Christina发布了新的文献求助10
1秒前
LYY应助fifteen采纳,获得10
2秒前
donfern完成签到,获得积分10
6秒前
7秒前
Singularity应助elle采纳,获得10
7秒前
Uniibooy完成签到 ,获得积分10
9秒前
9秒前
violin发布了新的文献求助10
13秒前
shelly完成签到,获得积分10
13秒前
14秒前
duduwind发布了新的文献求助10
14秒前
稳重的若雁应助牛牛采纳,获得10
15秒前
爱静静应助老仙翁采纳,获得10
15秒前
violin完成签到,获得积分10
20秒前
wanci应助机灵自中采纳,获得200
21秒前
慕青应助会飞的姚二狗采纳,获得10
21秒前
22秒前
谦让的振家完成签到,获得积分10
23秒前
Ning_完成签到 ,获得积分10
26秒前
君莫惜给君莫惜的求助进行了留言
27秒前
黑色的白鲸完成签到,获得积分10
27秒前
elle完成签到,获得积分20
30秒前
31秒前
32秒前
32秒前
33秒前
东东完成签到 ,获得积分10
34秒前
充电宝应助牛牛采纳,获得10
34秒前
36秒前
tang发布了新的文献求助10
36秒前
Frank应助lexy采纳,获得10
38秒前
toptop应助番茄采纳,获得10
38秒前
碧蓝黑夜完成签到,获得积分20
39秒前
00发布了新的文献求助10
40秒前
科研小呆瓜完成签到,获得积分10
41秒前
爱静静应助老仙翁采纳,获得10
42秒前
香蕉觅云应助Diss采纳,获得10
43秒前
45秒前
李德胜完成签到,获得积分10
47秒前
Nolan完成签到,获得积分10
47秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194