清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CMGFNet: A deep cross-modal gated fusion network for building extraction from very high-resolution remote sensing images

计算机科学 人工智能 融合 情态动词 特征提取 深度学习 特征(语言学) RGB颜色模型 模式识别(心理学) 传感器融合 计算机视觉 遥感 地理 哲学 语言学 化学 高分子化学
作者
Hamidreza Hosseinpour,Farhad Samadzadegan,Farzaneh Dadrass Javan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:184: 96-115 被引量:156
标识
DOI:10.1016/j.isprsjprs.2021.12.007
摘要

The extraction of urban structures such as buildings from very high-resolution (VHR) remote sensing imagery has improved dramatically, thanks to recent developments in deep multimodal fusion models. However, Due to the variety of colour intensities with complex textures of building objects in VHR images and the low quality of the digital surface model (DSM), it is challenging to develop the optimal cross-modal fusion network that takes advantage of these two modalities. This research presents an end-to-end cross-modal gated fusion network (CMGFNet) for extracting building footprints from VHR remote sensing images and DSMs data. The CMGFNet extracts multi-level features from RGB and DSM data by using two separate encoders. We offer two methods for fusing features in two modalities: Cross-modal and multi-level feature fusion. For cross-modal feature fusion, a gated fusion module (GFM) is proposed to combine two modalities efficiently. The multi-level feature fusion fuses the high-level features from deep layers with shallower low-level features through a top-down strategy. Furthermore, a residual-like depth-wise separable convolution (R-DSC) is introduced to enhance the performance of the up-sampling process and decrease the parameters and time complexity in the decoder section. Experimental results from challenging datasets show that the CMGFNet outperforms other state-of-the-art models. The efficacy of all significant elements is also confirmed by the extensive ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
考拉发布了新的文献求助10
9秒前
秋夜临完成签到,获得积分0
29秒前
43秒前
纳米果完成签到,获得积分10
45秒前
hxt_1025发布了新的文献求助10
48秒前
pikelet完成签到,获得积分10
57秒前
赘婿应助pikelet采纳,获得20
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
Qian完成签到 ,获得积分10
1分钟前
王新彤完成签到 ,获得积分10
1分钟前
尘远知山静完成签到 ,获得积分10
1分钟前
真实的傲儿完成签到 ,获得积分10
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
2分钟前
Lee0923发布了新的文献求助10
2分钟前
haprier完成签到 ,获得积分10
2分钟前
天成浩子完成签到 ,获得积分10
2分钟前
Lee0923完成签到,获得积分10
3分钟前
美好的冰蓝完成签到 ,获得积分10
3分钟前
Beyond095完成签到 ,获得积分10
3分钟前
3分钟前
西山菩提完成签到,获得积分10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
敏敏9813发布了新的文献求助10
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
北国雪未消完成签到 ,获得积分10
3分钟前
刘敦銮完成签到 ,获得积分10
3分钟前
科研狗完成签到 ,获得积分10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
云烟完成签到 ,获得积分10
4分钟前
myp完成签到,获得积分10
4分钟前
lql完成签到 ,获得积分10
4分钟前
ywzwszl完成签到,获得积分0
4分钟前
ding应助阳光的丹雪采纳,获得10
4分钟前
dx完成签到,获得积分10
5分钟前
lilylwy完成签到 ,获得积分0
5分钟前
debu9完成签到,获得积分10
5分钟前
英姑应助科研通管家采纳,获得50
5分钟前
懒得理完成签到 ,获得积分10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5222574
求助须知:如何正确求助?哪些是违规求助? 4395286
关于积分的说明 13681356
捐赠科研通 4258969
什么是DOI,文献DOI怎么找? 2337077
邀请新用户注册赠送积分活动 1334472
关于科研通互助平台的介绍 1289648