CMGFNet: A deep cross-modal gated fusion network for building extraction from very high-resolution remote sensing images

计算机科学 人工智能 融合 情态动词 特征提取 深度学习 特征(语言学) RGB颜色模型 模式识别(心理学) 传感器融合 计算机视觉 遥感 地理 哲学 语言学 化学 高分子化学
作者
Hamidreza Hosseinpour,Farhad Samadzadegan,Farzaneh Dadrass Javan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:184: 96-115 被引量:156
标识
DOI:10.1016/j.isprsjprs.2021.12.007
摘要

The extraction of urban structures such as buildings from very high-resolution (VHR) remote sensing imagery has improved dramatically, thanks to recent developments in deep multimodal fusion models. However, Due to the variety of colour intensities with complex textures of building objects in VHR images and the low quality of the digital surface model (DSM), it is challenging to develop the optimal cross-modal fusion network that takes advantage of these two modalities. This research presents an end-to-end cross-modal gated fusion network (CMGFNet) for extracting building footprints from VHR remote sensing images and DSMs data. The CMGFNet extracts multi-level features from RGB and DSM data by using two separate encoders. We offer two methods for fusing features in two modalities: Cross-modal and multi-level feature fusion. For cross-modal feature fusion, a gated fusion module (GFM) is proposed to combine two modalities efficiently. The multi-level feature fusion fuses the high-level features from deep layers with shallower low-level features through a top-down strategy. Furthermore, a residual-like depth-wise separable convolution (R-DSC) is introduced to enhance the performance of the up-sampling process and decrease the parameters and time complexity in the decoder section. Experimental results from challenging datasets show that the CMGFNet outperforms other state-of-the-art models. The efficacy of all significant elements is also confirmed by the extensive ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助好人一生平安采纳,获得10
刚刚
华仔应助xiaowang采纳,获得10
1秒前
2秒前
SL关闭了SL文献求助
4秒前
白华苍松发布了新的文献求助10
7秒前
ww发布了新的文献求助10
7秒前
江东散人发布了新的文献求助10
7秒前
翟翟发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
沈澜完成签到 ,获得积分10
12秒前
mmy完成签到 ,获得积分10
13秒前
妤懿完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
大模型应助bksqc采纳,获得10
16秒前
希望天下0贩的0应助ww采纳,获得10
18秒前
烟花应助阿渡采纳,获得10
19秒前
喏晨发布了新的文献求助100
19秒前
19秒前
从心从心发布了新的文献求助10
19秒前
univ发布了新的文献求助10
21秒前
22秒前
传奇3应助追寻沛萍采纳,获得10
22秒前
25秒前
25秒前
26秒前
27秒前
27秒前
28秒前
28秒前
科目三应助LBQ采纳,获得10
29秒前
量子星尘发布了新的文献求助10
29秒前
脚踏实地厚积薄发完成签到,获得积分10
29秒前
jignjing发布了新的文献求助10
30秒前
30秒前
昔日完成签到 ,获得积分10
31秒前
白华苍松发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537977
求助须知:如何正确求助?哪些是违规求助? 4625294
关于积分的说明 14595311
捐赠科研通 4565812
什么是DOI,文献DOI怎么找? 2502718
邀请新用户注册赠送积分活动 1481107
关于科研通互助平台的介绍 1452360