CMGFNet: A deep cross-modal gated fusion network for building extraction from very high-resolution remote sensing images

计算机科学 人工智能 融合 情态动词 特征提取 深度学习 特征(语言学) RGB颜色模型 模式识别(心理学) 传感器融合 计算机视觉 遥感 地理 哲学 语言学 化学 高分子化学
作者
Hamidreza Hosseinpour,Farhad Samadzadegan,Farzaneh Dadrass Javan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:184: 96-115 被引量:93
标识
DOI:10.1016/j.isprsjprs.2021.12.007
摘要

The extraction of urban structures such as buildings from very high-resolution (VHR) remote sensing imagery has improved dramatically, thanks to recent developments in deep multimodal fusion models. However, Due to the variety of colour intensities with complex textures of building objects in VHR images and the low quality of the digital surface model (DSM), it is challenging to develop the optimal cross-modal fusion network that takes advantage of these two modalities. This research presents an end-to-end cross-modal gated fusion network (CMGFNet) for extracting building footprints from VHR remote sensing images and DSMs data. The CMGFNet extracts multi-level features from RGB and DSM data by using two separate encoders. We offer two methods for fusing features in two modalities: Cross-modal and multi-level feature fusion. For cross-modal feature fusion, a gated fusion module (GFM) is proposed to combine two modalities efficiently. The multi-level feature fusion fuses the high-level features from deep layers with shallower low-level features through a top-down strategy. Furthermore, a residual-like depth-wise separable convolution (R-DSC) is introduced to enhance the performance of the up-sampling process and decrease the parameters and time complexity in the decoder section. Experimental results from challenging datasets show that the CMGFNet outperforms other state-of-the-art models. The efficacy of all significant elements is also confirmed by the extensive ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
东风完成签到,获得积分10
1秒前
ss25应助Yangyang采纳,获得400
1秒前
archaea完成签到,获得积分10
1秒前
anna1992完成签到,获得积分10
3秒前
专注梦之完成签到,获得积分10
3秒前
魔幻安南完成签到 ,获得积分10
3秒前
大模型应助琪琪的采纳,获得10
3秒前
4秒前
4秒前
4秒前
消消消消气完成签到 ,获得积分10
4秒前
刺槐完成签到,获得积分10
5秒前
yuuuke完成签到,获得积分10
5秒前
东皇太一完成签到,获得积分10
5秒前
6秒前
香蕉觅云应助篮孩子采纳,获得10
6秒前
anna1992发布了新的文献求助10
7秒前
7秒前
敞敞亮亮完成签到 ,获得积分10
8秒前
木一发布了新的文献求助10
8秒前
clientprogram应助Little Mianmian采纳,获得20
8秒前
月影完成签到,获得积分10
9秒前
阿祖完成签到,获得积分10
9秒前
zxzxzxzxzx完成签到 ,获得积分10
9秒前
玩伴zz发布了新的文献求助10
9秒前
所所应助KLM采纳,获得10
9秒前
mqq发布了新的文献求助10
9秒前
健壮荠完成签到,获得积分10
10秒前
ddsyg126发布了新的文献求助10
10秒前
飞飞鱼完成签到,获得积分10
10秒前
沉静青寒完成签到,获得积分10
10秒前
meiqiu发布了新的文献求助10
10秒前
星星又累完成签到,获得积分10
10秒前
10秒前
栗子芸完成签到,获得积分10
10秒前
lily完成签到,获得积分10
10秒前
有人应助风帆展采纳,获得10
11秒前
昏睡的蟠桃应助欢喜若男采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478