清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Approaches in Computational Toxicology Studies

机器学习 数量结构-活动关系 计算机科学 人工智能 鉴定(生物学) 集合(抽象数据类型) 植物 程序设计语言 生物
作者
Pravin Ambure,Stephen J. Barigye,Rafael Gozalbes
标识
DOI:10.1002/9781119681397.ch7
摘要

In the present world, the use of computational toxicity assessment techniques is highly encouraged as an alternative to the standard experimental toxicity testing. Quantitative structure–activity (toxicity) relationships (QSA(T)R) modeling is the most widely used in silico technique for risk assessment and hazard identification of chemicals. Recent advances in the QSAR technique include the application of several advanced machine learning techniques, capable of capturing the true (linear or nonlinear) relationships or patterns. In the present chapter, the authors describe several popular machine learning techniques in a simple and illustrative manner. The chapter initiates with an introduction to QSAR and machine learning techniques in toxicity testing along with its brief history and recent advances. Then the chapter progresses with the discussion of basic steps that are involved in toxicity data set collection, preparation (curation), and calculation of descriptors and fingerprints (or features) representing the collected chemicals. Subsequently, several often-used machine learning techniques under three broad categories, namely, unsupervised, supervised, and semi-supervised learning are discussed. In the next segment, the appropriate model selection and validation approaches applied to a QSAR model are briefly discussed. Finally, the freely available software tools and open-source libraries that are relevant to machine learning are highlighted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dichunxia完成签到,获得积分10
12秒前
英喆完成签到 ,获得积分10
36秒前
41秒前
jiyuanqi发布了新的文献求助10
45秒前
文艺的初南完成签到 ,获得积分10
1分钟前
席康完成签到 ,获得积分10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
wy发布了新的文献求助10
2分钟前
狮子座完成签到 ,获得积分10
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
CipherSage应助wy采纳,获得10
3分钟前
高海龙完成签到 ,获得积分10
3分钟前
JamesPei应助枯藤老柳树采纳,获得10
3分钟前
古炮完成签到 ,获得积分10
3分钟前
田田完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
凡人丿完成签到,获得积分10
4分钟前
一分发布了新的文献求助50
5分钟前
席江海完成签到,获得积分10
5分钟前
房天川完成签到 ,获得积分10
5分钟前
wangye完成签到 ,获得积分10
6分钟前
6分钟前
Amadeus发布了新的文献求助10
6分钟前
Amadeus完成签到,获得积分10
6分钟前
实力不允许完成签到 ,获得积分10
6分钟前
7分钟前
ww完成签到,获得积分10
8分钟前
波里舞完成签到 ,获得积分10
9分钟前
9分钟前
郑先生完成签到 ,获得积分10
9分钟前
科研通AI2S应助lilili采纳,获得10
9分钟前
刘刘完成签到 ,获得积分10
9分钟前
lilili发布了新的文献求助10
9分钟前
9分钟前
今天又来搬砖啦完成签到,获得积分10
11分钟前
川藏客完成签到 ,获得积分10
11分钟前
12分钟前
12分钟前
蔡俊辉发布了新的文献求助10
12分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142823
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807147
捐赠科研通 2449971
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350