Machine Learning Approaches in Computational Toxicology Studies

机器学习 数量结构-活动关系 计算机科学 人工智能 鉴定(生物学) 集合(抽象数据类型) 植物 程序设计语言 生物
作者
Pravin Ambure,Stephen J. Barigye,Rafael Gozalbes
标识
DOI:10.1002/9781119681397.ch7
摘要

In the present world, the use of computational toxicity assessment techniques is highly encouraged as an alternative to the standard experimental toxicity testing. Quantitative structure–activity (toxicity) relationships (QSA(T)R) modeling is the most widely used in silico technique for risk assessment and hazard identification of chemicals. Recent advances in the QSAR technique include the application of several advanced machine learning techniques, capable of capturing the true (linear or nonlinear) relationships or patterns. In the present chapter, the authors describe several popular machine learning techniques in a simple and illustrative manner. The chapter initiates with an introduction to QSAR and machine learning techniques in toxicity testing along with its brief history and recent advances. Then the chapter progresses with the discussion of basic steps that are involved in toxicity data set collection, preparation (curation), and calculation of descriptors and fingerprints (or features) representing the collected chemicals. Subsequently, several often-used machine learning techniques under three broad categories, namely, unsupervised, supervised, and semi-supervised learning are discussed. In the next segment, the appropriate model selection and validation approaches applied to a QSAR model are briefly discussed. Finally, the freely available software tools and open-source libraries that are relevant to machine learning are highlighted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
且慢应助科研通管家采纳,获得10
刚刚
xxfsx应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
cccui发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
且慢应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
高路路应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
wxyshare举报1127求助涉嫌违规
3秒前
欢呼败发布了新的文献求助10
3秒前
lllllllll完成签到,获得积分10
3秒前
大海发布了新的文献求助10
4秒前
5秒前
5秒前
负责流口水完成签到,获得积分10
5秒前
萌~Lucky完成签到,获得积分10
6秒前
bkagyin应助HAO采纳,获得10
7秒前
LIAN发布了新的文献求助10
7秒前
7秒前
辛辛完成签到,获得积分10
7秒前
可爱的函函应助非而者厚采纳,获得10
7秒前
在水一方应助非而者厚采纳,获得10
8秒前
小二郎应助非而者厚采纳,获得10
8秒前
善学以致用应助非而者厚采纳,获得10
8秒前
隐形曼青应助非而者厚采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091