Machine Learning Approaches in Computational Toxicology Studies

机器学习 数量结构-活动关系 计算机科学 人工智能 鉴定(生物学) 集合(抽象数据类型) 植物 生物 程序设计语言
作者
Pravin Ambure,Stephen J. Barigye,Rafael Gozalbes
标识
DOI:10.1002/9781119681397.ch7
摘要

In the present world, the use of computational toxicity assessment techniques is highly encouraged as an alternative to the standard experimental toxicity testing. Quantitative structure–activity (toxicity) relationships (QSA(T)R) modeling is the most widely used in silico technique for risk assessment and hazard identification of chemicals. Recent advances in the QSAR technique include the application of several advanced machine learning techniques, capable of capturing the true (linear or nonlinear) relationships or patterns. In the present chapter, the authors describe several popular machine learning techniques in a simple and illustrative manner. The chapter initiates with an introduction to QSAR and machine learning techniques in toxicity testing along with its brief history and recent advances. Then the chapter progresses with the discussion of basic steps that are involved in toxicity data set collection, preparation (curation), and calculation of descriptors and fingerprints (or features) representing the collected chemicals. Subsequently, several often-used machine learning techniques under three broad categories, namely, unsupervised, supervised, and semi-supervised learning are discussed. In the next segment, the appropriate model selection and validation approaches applied to a QSAR model are briefly discussed. Finally, the freely available software tools and open-source libraries that are relevant to machine learning are highlighted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月月发布了新的文献求助10
1秒前
abcdefg发布了新的文献求助10
1秒前
深情的冬灵完成签到,获得积分20
1秒前
机智的琪完成签到 ,获得积分10
2秒前
小蘑菇应助linmo采纳,获得10
2秒前
杨三多发布了新的文献求助10
2秒前
Desperado发布了新的文献求助10
4秒前
易琚完成签到,获得积分10
7秒前
活泼的机器猫完成签到,获得积分10
8秒前
Jasper应助晶镓万岁采纳,获得10
8秒前
8秒前
8秒前
9秒前
明亮梦安完成签到 ,获得积分10
9秒前
自信以冬发布了新的文献求助10
10秒前
10秒前
10秒前
ZXF发布了新的文献求助10
10秒前
希望天下0贩的0应助田...采纳,获得10
11秒前
11秒前
万能图书馆应助YINGJI采纳,获得10
11秒前
优美飞柏完成签到,获得积分10
11秒前
12秒前
吗喽小祁完成签到,获得积分10
13秒前
aitianzhuoyi发布了新的文献求助10
13秒前
enchanted完成签到,获得积分10
13秒前
13秒前
搜集达人应助司空天磊采纳,获得10
14秒前
14秒前
小蘑菇应助友好的鲜花采纳,获得10
15秒前
shangxinyu发布了新的文献求助10
15秒前
斯文败类应助俭朴钢铁侠采纳,获得10
16秒前
17秒前
18秒前
18秒前
linmo发布了新的文献求助10
18秒前
18秒前
热舞特发布了新的文献求助10
18秒前
19秒前
公子浅言完成签到 ,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271