Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials

医学 病变 Sørensen–骰子系数 分割 临床试验 深度学习 磁共振成像 接收机工作特性 比例危险模型 对比度(视觉) 放射科 核医学 人工智能 外科 内科学 图像分割 计算机科学
作者
Anitha Priya Krishnan,Zhuang Song,David Clayton,Laura Gaetano,Xiaoming Jia,Alex de Crespigny,Thomas Bengtsson,Richard A.D. Carano
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (3): 662-673 被引量:10
标识
DOI:10.1148/radiol.211528
摘要

Background Deep learning-based segmentation could facilitate rapid and reproducible T1 lesion load assessments, which is crucial for disease management in multiple sclerosis (MS). T1 unenhancing and contrast-enhancing lesions in MS are those that enhance or do not enhance after administration of a gadolinium-based contrast agent at T1-weighted MRI. Purpose To develop deep learning models for automated assessment of T1 unenhancing and contrast-enhancing lesions; to investigate if joint training improved performance; to reproduce a known ocrelizumab treatment response; and to evaluate the association of baseline T1-weighted imaging metrics with clinical outcomes in relapsing MS clinical trials. Materials and Methods Joint and individual deep learning models (U-Nets) were developed retrospectively on multimodal MRI data sets from large multicenter OPERA trials of relapsing MS (August 2011 to May 2015). The joint model included cross-network connections and a combined loss function. Models were trained on OPERA I data sets with three-fold cross-validation. OPERA II data sets were the internal test set. Dice coefficients, lesion true-positive and false-positive rates, and areas under the receiver operating characteristic curve (AUCs) were used to evaluate model performance. Association of baseline imaging metrics with clinical outcomes was assessed with Cox proportional hazards models. Results A total of 796 patients (3030 visits; mean age, 37 years ± 9; 521 women) from the OPERA II trial were evaluated. The joint model achieved a mean Dice coefficient of 0.77 and 0.74, lesion true-positive rate of 0.88 and 0.86, and lesion false-positive rate of 0.04 and 0.19 for T1 contrast-enhancing and T1 unenhancing lesion segmentation, respectively. Joint training improved performance for smaller T1 contrast-enhancing lesions (≤0.06 mL; individual training AUC: 0.75; joint training AUC: 0.87; P < .001). A significant ocrelizumab treatment effect (P < .001) was seen in reducing the mean number of T1 contrast-enhancing lesions at 24, 48, and 96 weeks (manual assessment at 24 weeks: 10 lesions in 366 patients with ocrelizumab, 141 lesions in 355 patients with interferon, 93% reduction; manual assessment at 48 weeks: six lesions in 355 patients with ocrelizumab, 150 lesions in 317 patients with interferon, 96% reduction; manual assessment at 96 weeks: five lesions in 340 patients with ocrelizumab, 157 lesions in 294 patients with interferon, 97% reduction; joint model assessment at 24 weeks: 19 lesions in 365 patients with ocrelizumab, 128 lesions in 354 patients with interferon, 86% reduction; joint model assessment at 48 weeks: 14 lesions in 355 patients with ocrelizumab, 121 lesions in 317 patients with interferon, 90% reduction; joint model assessment at 96 weeks: 10 lesions in 340 patients with ocrelizumab, 144 lesions in 294 patients with interferon, 94% reduction) and the mean number of new T1 unenhancing lesions across all follow-up examinations (manual assessment: 504 lesions in 1060 visits for ocrelizumab-treated patients, 1438 lesions in 965 visits for interferon-treated patients, 68% reduction; joint model assessment: 205 lesions in 1053 visits for ocrelizumab-treated patients, 661 lesions in 957 visits for interferon-treated patients, 78% reduction). Baseline T1 unenhancing total lesion volume was associated with clinical outcomes (manual hazard ratio [HR]: 1.12, P = .02; joint model HR: 1.11, P = .03). Conclusion Joint architecture and training improved segmentation of MRI T1 contrast-enhancing multiple sclerosis lesions, and both deep learning models had sufficiently high performance to detect an ocrelizumab treatment response consistent with manual assessments. ClinicalTrials.gov: NCT01247324 and NCT01412333 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Talbott in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋尔丝完成签到 ,获得积分10
1秒前
2秒前
2秒前
Leozheng完成签到,获得积分10
3秒前
小马甲应助yy123采纳,获得10
3秒前
斯文败类应助Tim采纳,获得30
4秒前
乐乐应助清脆元珊采纳,获得10
5秒前
科研通AI2S应助mei采纳,获得10
5秒前
adazbd完成签到,获得积分10
6秒前
醉林完成签到,获得积分10
8秒前
holland完成签到 ,获得积分10
8秒前
VDC发布了新的文献求助10
9秒前
在水一方应助tyty采纳,获得10
10秒前
善良绮菱发布了新的文献求助10
11秒前
zhang完成签到,获得积分20
11秒前
可靠的冰烟完成签到,获得积分10
12秒前
傅宣完成签到,获得积分10
12秒前
yiyi完成签到,获得积分10
13秒前
隐形的寻雪完成签到,获得积分10
13秒前
Mt完成签到,获得积分10
16秒前
研研不断关注了科研通微信公众号
17秒前
yiyi发布了新的文献求助30
18秒前
刻苦鼠标完成签到,获得积分10
18秒前
18秒前
科研通AI5应助王小黑采纳,获得10
19秒前
热心的苡完成签到,获得积分10
20秒前
21秒前
21秒前
Gluneko完成签到,获得积分20
21秒前
yy应助善良绮菱采纳,获得10
22秒前
乐观啤酒应助善良绮菱采纳,获得10
22秒前
充电宝应助ttttttttttt采纳,获得10
22秒前
菠萝完成签到,获得积分20
23秒前
23秒前
佳AOAOAO发布了新的文献求助10
24秒前
Cherry完成签到 ,获得积分10
25秒前
26秒前
xinyi完成签到,获得积分10
27秒前
孙二二完成签到,获得积分10
27秒前
深情安青应助SCI采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738248
求助须知:如何正确求助?哪些是违规求助? 3281724
关于积分的说明 10026477
捐赠科研通 2998622
什么是DOI,文献DOI怎么找? 1645291
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891