Real-time automated diagnosis of colorectal cancer invasion depth using a deep learning model with multimodal data (with video)

医学 结直肠癌 人工智能 深度学习 结肠镜检查 癌症 内科学 计算机科学
作者
Zihua Lu,Y Xu,Liwen Yao,Wei Zhou,Wei Gong,Genhua Yang,Mingwen Guo,Beiping Zhang,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:95 (6): 1186-1194.e3 被引量:21
标识
DOI:10.1016/j.gie.2021.11.049
摘要

The optical diagnosis of colorectal cancer (CRC) invasion depth with white light (WL) and image-enhanced endoscopy (IEE) remains challenging. We aimed to construct and validate a 2-modal deep learning-based system, incorporated with both WL and IEE images (named Endo-CRC) in estimating the invasion depth of CRC.Samples were retrospectively obtained from 3 hospitals in China. We combined WL and IEE images into image pairs. Altogether, 337,278 image pairs from 268 noninvasive and superficial CRC and 181,934 image pairs from 82 deep CRC were used for training. A total of 296,644 and 4528 image pairs were used for internal and external tests and for comparison with endoscopists. Thirty-five videos were used for evaluating the real-time performance of the Endo-CRC system. Two deep learning models, solely using either WL (model W) or IEE images (model I), were constructed to compare with Endo-CRC.The accuracies of Endo-CRC in internal image tests with and without advanced CRC were 91.61% and 93.78%, respectively, and 88.65% in the external test, which did not include advanced CRC. In an endoscopist-machine competition, Endo-CRC achieved an expert comparable accuracy of 88.11% and the highest sensitivity compared with all endoscopists. In a video test, Endo-CRC achieved an accuracy of 100.00%. Compared with model W and model I, Endo-CRC had a higher accuracy (per image pair: 91.61% vs 88.27% compared with model I and 91.61% vs 81.32% compared with model W).The Endo-CRC system has great potential for assisting in CRC invasion depth diagnosis and may be well applied in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭佳丽完成签到,获得积分10
刚刚
刚刚
dy完成签到,获得积分10
刚刚
华仔应助lin采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
万能图书馆应助万物更始采纳,获得10
2秒前
CodeCraft应助yuan采纳,获得10
2秒前
2秒前
3秒前
3秒前
壮观飞珍完成签到,获得积分10
4秒前
Esther完成签到,获得积分10
4秒前
一梦发布了新的文献求助10
4秒前
耀阳发布了新的文献求助10
5秒前
Chou发布了新的文献求助10
5秒前
6秒前
6秒前
哈哈哈完成签到,获得积分10
7秒前
7秒前
科研小白发布了新的文献求助10
9秒前
00发布了新的文献求助10
9秒前
故意的身影完成签到,获得积分20
10秒前
zihanwang应助沉默傲芙采纳,获得10
10秒前
10秒前
Ava应助小凯采纳,获得10
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
nananaa应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
heyihao应助科研通管家采纳,获得20
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070