Real-time automated diagnosis of colorectal cancer invasion depth using a deep learning model with multimodal data (with video)

医学 结直肠癌 人工智能 深度学习 结肠镜检查 癌症 内科学 计算机科学
作者
Zihua Lu,Y. Xu,Liwen Yao,Wei Zhou,Wei Gong,Genhua Yang,Mingwen Guo,Beiping Zhang,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (6): 1186-1194.e3 被引量:24
标识
DOI:10.1016/j.gie.2021.11.049
摘要

The optical diagnosis of colorectal cancer (CRC) invasion depth with white light (WL) and image-enhanced endoscopy (IEE) remains challenging. We aimed to construct and validate a 2-modal deep learning-based system, incorporated with both WL and IEE images (named Endo-CRC) in estimating the invasion depth of CRC.Samples were retrospectively obtained from 3 hospitals in China. We combined WL and IEE images into image pairs. Altogether, 337,278 image pairs from 268 noninvasive and superficial CRC and 181,934 image pairs from 82 deep CRC were used for training. A total of 296,644 and 4528 image pairs were used for internal and external tests and for comparison with endoscopists. Thirty-five videos were used for evaluating the real-time performance of the Endo-CRC system. Two deep learning models, solely using either WL (model W) or IEE images (model I), were constructed to compare with Endo-CRC.The accuracies of Endo-CRC in internal image tests with and without advanced CRC were 91.61% and 93.78%, respectively, and 88.65% in the external test, which did not include advanced CRC. In an endoscopist-machine competition, Endo-CRC achieved an expert comparable accuracy of 88.11% and the highest sensitivity compared with all endoscopists. In a video test, Endo-CRC achieved an accuracy of 100.00%. Compared with model W and model I, Endo-CRC had a higher accuracy (per image pair: 91.61% vs 88.27% compared with model I and 91.61% vs 81.32% compared with model W).The Endo-CRC system has great potential for assisting in CRC invasion depth diagnosis and may be well applied in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光发布了新的文献求助30
刚刚
kak完成签到,获得积分10
刚刚
啦啦啦发布了新的文献求助10
1秒前
三七二一完成签到,获得积分10
1秒前
123456789完成签到,获得积分10
1秒前
研友_VZG7GZ应助拖拉机采纳,获得10
1秒前
吴中秋发布了新的文献求助10
1秒前
冯梦梦发布了新的文献求助10
1秒前
小蚂蚁发布了新的文献求助10
1秒前
2秒前
汉堡包应助LALball采纳,获得10
2秒前
orixero应助chengxc采纳,获得10
2秒前
2秒前
荼蘼如雪完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
Rishel_Li完成签到,获得积分10
3秒前
夕荀发布了新的文献求助10
3秒前
微尘完成签到,获得积分10
3秒前
无花果应助mumu采纳,获得30
4秒前
华仔应助专注的枫叶采纳,获得10
4秒前
纯真的元风完成签到,获得积分10
4秒前
4秒前
情怀应助zhuzhu采纳,获得10
4秒前
4秒前
微风往事发布了新的文献求助10
4秒前
4秒前
5秒前
开心的半仙完成签到,获得积分10
5秒前
大模型应助Yangfan采纳,获得10
5秒前
ding应助Gracywss采纳,获得20
5秒前
lh发布了新的文献求助10
5秒前
陶醉的代玉完成签到 ,获得积分10
6秒前
6秒前
LYJ完成签到,获得积分10
7秒前
ml完成签到 ,获得积分10
7秒前
罗是一完成签到,获得积分10
7秒前
爱吃泡芙完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006