作者
Zhuo Wang,Thomas Efferth,Xin Hua,Xinan Zhang
摘要
With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA.This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA.Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint."According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1β, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/β-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis.The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.