已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries

流量(数学) 电极 电气工程 碳纤维 功率(物理) 材料科学 化学工程 工程类 化学 机械 冶金 复合材料 物理 热力学 物理化学 复合数
作者
Huanhuan Hao,Qian Zhang,Ziyang Feng,Ao Tang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:450: 138170-138170 被引量:28
标识
DOI:10.1016/j.cej.2022.138170
摘要

• Carving flow field design on felts enhance mass transfer and reduce pressure drop. • Parallel flow based felt outperforms pristine interdigitated flow based felts. • Simulation and experiment confirm the superiority parallel flow based felt design. • A 70% system efficiency is predicted for 32 kW stack with parallel flow based felt. Flow batteries promise a great practice to integrate with renewable energy sources in electric grid applications. However, high power density operation of flow batteries remains a challenge due to mass transport limitation and flow resistance in porous carbon felt electrode, which urges the need of advanced flow design to synergistically lower concentration polarization and reduce pressure drop. Herein, we realize a remarkably enhanced power density operation for vanadium flow batteries by regulating flow field design on carbon felt electrodes. Finite element analyses firstly reveal significantly reduced pressure drop, well-distributed reactant and promoted flow velocity on carbon felts with parallel and interdigitated flow designs. On the basis of measured local mass transfer coefficients, both interdigitated and parallel based felts exhibit a notable reduction in simulated concentration polarization at 200 mA cm -2 with parallel flow outperforming interdigitated design. Experimental validations further confirm a superior voltage efficiency of 78% and significantly enhanced discharge capacity at 200 mA cm -2 for the flow cell adopting parallel based felts. Finally, dynamic modelling and simulation of an industrial-scale 32 kW stack highlight a desirable system efficiency of ca. 70% for the parallel flow felt design at 200 mA cm -2 , signifying a great potential of regulating flow field on carbon felts for design and scale-up of practical flow battery stacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一枚小豆完成签到,获得积分10
2秒前
小乌龟完成签到 ,获得积分10
3秒前
包容雪卉完成签到 ,获得积分10
5秒前
LG完成签到,获得积分10
5秒前
zhaowenxian完成签到,获得积分10
7秒前
8秒前
Jacky77完成签到,获得积分10
10秒前
言辞完成签到,获得积分10
12秒前
cappuccino完成签到 ,获得积分10
12秒前
夏夏完成签到,获得积分10
13秒前
13秒前
14秒前
走走发布了新的文献求助10
14秒前
15秒前
研友_VZG7GZ应助夏夏采纳,获得10
16秒前
qing完成签到,获得积分10
17秒前
星辰大海应助重要思真采纳,获得10
18秒前
满意妙梦发布了新的文献求助10
19秒前
云上人完成签到 ,获得积分10
20秒前
单薄咖啡豆完成签到,获得积分10
20秒前
传奇3应助午梦千山采纳,获得10
20秒前
zhoushishan发布了新的文献求助10
21秒前
科目三应助Cmqq采纳,获得10
27秒前
wang完成签到 ,获得积分10
27秒前
wanci应助R18686226306采纳,获得10
28秒前
悄悄拔尖儿完成签到 ,获得积分10
29秒前
29秒前
Uncanny完成签到,获得积分10
30秒前
甜美帅哥完成签到,获得积分10
30秒前
30秒前
甜甜的以筠完成签到 ,获得积分10
32秒前
violet完成签到 ,获得积分10
33秒前
图图完成签到 ,获得积分10
33秒前
重要思真发布了新的文献求助10
33秒前
lifeng完成签到 ,获得积分10
35秒前
35秒前
脑洞疼应助忧郁曼云采纳,获得10
35秒前
午梦千山完成签到,获得积分10
35秒前
issie完成签到,获得积分10
39秒前
zhoushishan完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685229
关于积分的说明 14838214
捐赠科研通 4669062
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505449
关于科研通互助平台的介绍 1470833