Nonradical-dominated peroxymonosulfate activation through bimetallic Fe/Mn-loaded hydroxyl-rich biochar for efficient degradation of tetracycline

生物炭 化学 双金属片 激进的 催化作用 光化学 猝灭(荧光) 电子顺磁共振 羟基自由基 活化能 协同催化 降级(电信) 无机化学 有机化学 荧光 热解 电信 物理 核磁共振 量子力学 计算机科学
作者
Yihui Li,Deying Lin,Yongfu Li,Peikun Jiang,Xiaobo Fang,Bing Yu
出处
期刊:Nano Research [Springer Science+Business Media]
卷期号:16 (1): 155-165 被引量:56
标识
DOI:10.1007/s12274-022-4640-8
摘要

Biochar-based transition metal catalysts have been identified as excellent peroxymonosulfate (PMS) activators for producing radicals used to degrade organic pollutants. However, the radical-dominated pathways for PMS activation severely limit their practical applications in the degradation of organic pollutants from wastewater due to side reactions between radicals and the coexisting anions. Herein, bimetallic Fe/Mn-loaded hydroxyl-rich biochar (FeMn-OH-BC) is synthesized to activate PMS through nonradical-dominated pathways. The as-prepared FeMn-OH-BC exhibits excellent catalytic activity for degrading tetracycline at broad pH conditions ranging from 5 to 9, and about 85.0% of tetracycline is removed in 40 min. Experiments on studying the influences of various anions (HCO3−, NO3−, and H2PO4−) show that the inhibiting effect is negligible, suggesting that the FeMn-OH-BC based PMS activation is dominated by nonradical pathways. Electron paramagnetic resonance measurements and quenching tests provide direct evidence to confirm that 1O2 is the major reactive oxygen species generated from FeMn-OH-BC based PMS activation. Theoretical calculations further reveal that the FeMn-OH sites in FeMn-OH-BC are dominant active sites for PMS activation, which have higher adsorption energy and stronger oxidative activity towards PMS than OH-BC sites. This work provides a new route for driving PMS activation by biochar-based transition metal catalysts through nonradical pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
咕噜咕噜噜熊完成签到,获得积分10
1秒前
超级的小海豚完成签到,获得积分10
1秒前
1秒前
1秒前
深情安青应助LK采纳,获得10
1秒前
渔Avery完成签到,获得积分10
1秒前
forever完成签到,获得积分20
1秒前
xiaoyuanbao1988完成签到,获得积分10
1秒前
啊撒网大大e完成签到,获得积分10
2秒前
蓝胖子完成签到,获得积分10
3秒前
4秒前
坚定缘分完成签到,获得积分10
6秒前
细腻问柳完成签到 ,获得积分10
6秒前
金属喵酱完成签到,获得积分10
6秒前
forever发布了新的文献求助10
7秒前
Anny完成签到,获得积分20
7秒前
兔兔不睡觉完成签到 ,获得积分10
8秒前
9秒前
华仔应助tzjz_zrz采纳,获得30
10秒前
kento发布了新的文献求助30
10秒前
cc完成签到,获得积分10
10秒前
qiangxu发布了新的文献求助10
11秒前
11秒前
无花果应助懒猫采纳,获得10
11秒前
11秒前
清水完成签到 ,获得积分10
12秒前
LK发布了新的文献求助10
14秒前
思源应助活泼的觅云采纳,获得30
15秒前
15秒前
彼岸完成签到,获得积分10
17秒前
19秒前
顾矜应助阳光千亦采纳,获得10
21秒前
烟花应助forever采纳,获得10
21秒前
21秒前
xiaowang完成签到,获得积分10
21秒前
23秒前
岸岸岸岸完成签到,获得积分10
23秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755395
求助须知:如何正确求助?哪些是违规求助? 3298462
关于积分的说明 10105902
捐赠科研通 3013141
什么是DOI,文献DOI怎么找? 1655012
邀请新用户注册赠送积分活动 789339
科研通“疑难数据库(出版商)”最低求助积分说明 753273