Machine learning techniques for pavement condition evaluation

机器学习 路面管理 数据收集 人工智能 工程类 计算机科学 分割 运输工程 数学 统计
作者
Nima Sholevar,Amir Golroo,Sahand Roghani Esfahani
出处
期刊:Automation in Construction [Elsevier]
卷期号:136: 104190-104190 被引量:109
标识
DOI:10.1016/j.autcon.2022.104190
摘要

Pavement management systems play a significant role in country's economy since road authorities are concerned about preserving their priceless road assets for a longer time to save maintenance costs. An essential part of such systems is how to collect and analyze pavement condition data. This paper reviews the state-of-the-art techniques in pavement condition data evaluation using machine learning techniques, more specifically, the application of machine learning methods: image classification, object detection, and segmentation in pavement distress assessment is investigated. Furthermore, the pavement automated data collection tools and pavement condition indices have been reviewed from the lens of machine learning applications. The review concludes that the overall trends in pavement condition evaluation is to apply machine learning techniques although there are some limitations not only in detection of few pavement distresses with complicated patterns but also in indication of the severity and density of distresses leading to avenues for future research. • Reviewed various data acquisition tools for pavement condition evaluation • Documented pavement distress detection using machine learning • Investigated on machine learning applications in assessment of pavement condition indices • Studied public and private datasets for training of machine learning models
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月军发布了新的文献求助10
刚刚
2秒前
GU发布了新的文献求助10
2秒前
大个应助转圈晕倒采纳,获得10
3秒前
务实饼干完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
5秒前
星辰大海应助奔奔采纳,获得10
5秒前
6秒前
nixx发布了新的文献求助10
7秒前
CipherSage应助曾经天德采纳,获得20
8秒前
9秒前
10秒前
zhangdoc完成签到,获得积分10
10秒前
didi发布了新的文献求助10
12秒前
Su发布了新的文献求助10
13秒前
lim完成签到 ,获得积分10
13秒前
LNULZY完成签到,获得积分10
13秒前
彳亍1117应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
itsserene应助科研通管家采纳,获得10
14秒前
不配.应助科研通管家采纳,获得20
14秒前
科目三应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
15秒前
15秒前
小陈住垃圾桶完成签到,获得积分10
15秒前
流氓兔1514完成签到,获得积分10
15秒前
dd完成签到,获得积分20
15秒前
KY Mr.WANG完成签到,获得积分10
16秒前
田様应助毛毛猫采纳,获得10
19秒前
xixi完成签到,获得积分10
19秒前
白白拜拜完成签到,获得积分10
21秒前
SciGPT应助墨海采纳,获得10
21秒前
月军完成签到,获得积分10
22秒前
田様应助俊秀的问旋采纳,获得10
23秒前
25秒前
不配.应助烨枫晨曦采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079