Looking Outside the Window: Wide-Context Transformer for the Semantic Segmentation of High-Resolution Remote Sensing Images

计算机科学 分割 窗口(计算) 遥感 图像分割 图像分辨率 变压器 人工智能 计算机视觉 地质学 万维网 电气工程 工程类 电压
作者
Lei Ding,Dong Lin,Shaofu Lin,Jing Zhang,Xiaojie Cui,Yuebin Wang,Hao Tang,Lorenzo Bruzzone
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:111
标识
DOI:10.1109/tgrs.2022.3168697
摘要

Long-range contextual information is crucial for the semantic segmentation of High-Resolution (HR) Remote Sensing Images (RSIs). However, image cropping operations, commonly used for training neural networks, limit the perception of long-range contexts in large RSIs. To overcome this limitation, we propose a Wide-Context Network (WiCoNet) for the semantic segmentation of HR RSIs. Apart from extracting local features with a conventional CNN, the WiCoNet has an extra context branch to aggregate information from a larger image area. Moreover, we introduce a Context Transformer to embed contextual information from the context branch and selectively project it onto the local features. The Context Transformer extends the Vision Transformer, an emerging kind of neural network, to model the dual-branch semantic correlations. It overcomes the locality limitation of CNNs and enables the WiCoNet to see the bigger picture before segmenting the land-cover/land-use (LCLU) classes. Ablation studies and comparative experiments conducted on several benchmark datasets demonstrate the effectiveness of the proposed method. In addition, we present a new Beijing Land-Use (BLU) dataset. This is a large-scale HR satellite dataset with high-quality and fine-grained reference labels, which can facilitate future studies in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
ysxl发布了新的文献求助10
刚刚
ruirui发布了新的文献求助10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
阿Q完成签到,获得积分10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
浮游应助ri_290采纳,获得10
刚刚
风笛完成签到,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
浮游应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
隐形的宝宝完成签到,获得积分10
1秒前
liao应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
打打应助大吉岭采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
1101592875应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
洁净访冬发布了新的文献求助10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
Tam应助科研通管家采纳,获得18
3秒前
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027