Looking Outside the Window: Wide-Context Transformer for the Semantic Segmentation of High-Resolution Remote Sensing Images

计算机科学 分割 遥感 卷积神经网络 变压器 人工智能 土地覆盖 计算机视觉 地质学 土地利用 量子力学 物理 工程类 土木工程 电压
作者
Lei Ding,Dong Lin,Shaofu Lin,Jing Zhang,Xiaojie Cui,Yuebin Wang,Hao Tang,Lorenzo Bruzzone
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:84
标识
DOI:10.1109/tgrs.2022.3168697
摘要

Long-range contextual information is crucial for the semantic segmentation of high-resolution (HR) remote sensing images (RSIs). However, image cropping operations, commonly used for training neural networks, limit the perception of long-range contexts in large RSIs. To overcome this limitation, we propose a wide-context network (WiCoNet) for the semantic segmentation of HR RSIs. Apart from extracting local features with a conventional convolutional neural network (CNN), the WiCoNet has an extra context branch to aggregate information from a larger image area. Moreover, we introduce a context transformer to embed contextual information from the context branch and selectively project it onto the local features. The context transformer extends the vision transformer, an emerging kind of neural networks, to model the dual-branch semantic correlations. It overcomes the locality limitation of CNNs and enables the WiCoNet to see the bigger picture before segmenting the land-cover/land-use (LCLU) classes. Ablation studies and comparative experiments conducted on several benchmark datasets demonstrate the effectiveness of the proposed method. In addition, we present a new Beijing Land-Use (BLU) dataset. This is a large-scale HR satellite dataset with high-quality and fine-grained reference labels, which can facilitate future studies in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sun了个晒完成签到,获得积分10
1秒前
Dandelion关注了科研通微信公众号
2秒前
3秒前
Mumu完成签到,获得积分10
4秒前
4秒前
4秒前
Orange应助MM采纳,获得10
4秒前
5秒前
江湖护卫舰应助cc采纳,获得30
5秒前
领导范儿应助yfh1997采纳,获得10
5秒前
YY发布了新的文献求助10
5秒前
hakunamatata完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
8秒前
8秒前
含蓄的小熊猫完成签到 ,获得积分10
8秒前
执着的诗桃完成签到,获得积分10
9秒前
流年发布了新的文献求助10
9秒前
诚心梦之完成签到,获得积分10
9秒前
10秒前
10秒前
NexusExplorer应助Luhh采纳,获得10
11秒前
眼睛大樱桃完成签到,获得积分10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
布丁发布了新的文献求助10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
不倒翁发布了新的文献求助10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
周二完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941797
求助须知:如何正确求助?哪些是违规求助? 4207663
关于积分的说明 13078817
捐赠科研通 3986706
什么是DOI,文献DOI怎么找? 2182648
邀请新用户注册赠送积分活动 1198336
关于科研通互助平台的介绍 1110591