计算机科学
分割
窗口(计算)
遥感
图像分割
图像分辨率
变压器
人工智能
计算机视觉
地质学
万维网
电气工程
工程类
电压
作者
Lei Ding,Dong Lin,Shaofu Lin,Jing Zhang,Xiaojie Cui,Yuebin Wang,Hao Tang,Lorenzo Bruzzone
标识
DOI:10.1109/tgrs.2022.3168697
摘要
Long-range contextual information is crucial for the semantic segmentation of High-Resolution (HR) Remote Sensing Images (RSIs). However, image cropping operations, commonly used for training neural networks, limit the perception of long-range contexts in large RSIs. To overcome this limitation, we propose a Wide-Context Network (WiCoNet) for the semantic segmentation of HR RSIs. Apart from extracting local features with a conventional CNN, the WiCoNet has an extra context branch to aggregate information from a larger image area. Moreover, we introduce a Context Transformer to embed contextual information from the context branch and selectively project it onto the local features. The Context Transformer extends the Vision Transformer, an emerging kind of neural network, to model the dual-branch semantic correlations. It overcomes the locality limitation of CNNs and enables the WiCoNet to see the bigger picture before segmenting the land-cover/land-use (LCLU) classes. Ablation studies and comparative experiments conducted on several benchmark datasets demonstrate the effectiveness of the proposed method. In addition, we present a new Beijing Land-Use (BLU) dataset. This is a large-scale HR satellite dataset with high-quality and fine-grained reference labels, which can facilitate future studies in this field.
科研通智能强力驱动
Strongly Powered by AbleSci AI