DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity

医学 眼科 裂隙灯 验光服务
作者
Tiarnan D L Keenan,Qingyu Chen,Elvira Agrón,Yih‐Chung Tham,Jocelyn Hui Lin Goh,Xiaofeng Lei,Yi Pin Ng,Nan Liu,Xinxing Xu,Ching-Yu Cheng,Mukharram M. Bikbov,Jost B. Jonas,S. Bhandari,Geoffrey K. Broadhead,Marcus H. Colyer,Jonathan Corsini,Chantal Cousineau-Krieger,William G. Gensheimer,David Josip Grašić,T.S. Lamba,M. Teresa Magone,Michele Maiberger,Arnold Oshinsky,Boonkit Purt,Soo Young Shin,Alisa T. Thavikulwat,Zhiyong Lu,Emily Y. Chew,Priscilla Ajilore,Alex Akman,Nadim S. Azar,William S. Azar,Bryan Chan,Victor Cox,Amisha Dave,Rachna Dhanjal,Mary K. Donovan,Maureen C. Farrell,Francisca Finkel,Timothy Goblirsch,Wesley Ha,Christine Hill,Aman Kumar,Kristen J. Kent,Arielle Lee,Pujan R. Patel,David Peprah,Emma Piliponis,Evan B. Selzer,Benjamin Swaby,S.M. Tenney,Alexander Zeleny
出处
期刊:Ophthalmology [Elsevier]
卷期号:129 (5): 571-584 被引量:33
标识
DOI:10.1016/j.ophtha.2021.12.017
摘要

To develop deep learning models to perform automated diagnosis and quantitative classification of age-related cataract from anterior segment photographs.DeepLensNet was trained by applying deep learning models to the Age-Related Eye Disease Study (AREDS) dataset.A total of 18 999 photographs (6333 triplets) from longitudinal follow-up of 1137 eyes (576 AREDS participants).Deep learning models were trained to detect and quantify nuclear sclerosis (NS; scale 0.9-7.1) from 45-degree slit-lamp photographs and cortical lens opacity (CLO; scale 0%-100%) and posterior subcapsular cataract (PSC; scale 0%-100%) from retroillumination photographs. DeepLensNet performance was compared with that of 14 ophthalmologists and 24 medical students.Mean squared error (MSE).On the full test set, mean MSE for DeepLensNet was 0.23 (standard deviation [SD], 0.01) for NS, 13.1 (SD, 1.6) for CLO, and 16.6 (SD, 2.4) for PSC. On a subset of the test set (substantially enriched for positive cases of CLO and PSC), for NS, mean MSE for DeepLensNet was 0.23 (SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, mean MSE was 53.5 (SD, 14.8), compared with 134.9 (SD, 89.9; P = 0.003) for the ophthalmologists and 433.6 (SD, 962.1; P = 0.0007) for the medical students. For PSC, mean MSE was 171.9 (SD, 38.9), compared with 176.8 (SD, 98.0; P = 0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical students. In external validation on the Singapore Malay Eye Study (sampled to reflect the cataract severity distribution in AREDS), the MSE for DeepSeeNet was 1.27 for NS and 25.5 for PSC.DeepLensNet performed automated and quantitative classification of cataract severity for all 3 types of age-related cataract. For the 2 most common types (NS and CLO), the accuracy was significantly superior to that of ophthalmologists; for the least common type (PSC), it was similar. DeepLensNet may have wide potential applications in both clinical and research domains. In the future, such approaches may increase the accessibility of cataract assessment globally. The code and models are available at https://github.com/ncbi/deeplensnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天将明完成签到 ,获得积分10
2秒前
Aixia完成签到 ,获得积分10
14秒前
范白容完成签到 ,获得积分0
18秒前
nt1119完成签到 ,获得积分10
18秒前
和谐尔阳完成签到 ,获得积分10
22秒前
Cai完成签到,获得积分10
25秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
25秒前
狂野乌冬面完成签到 ,获得积分10
31秒前
sci_zt完成签到 ,获得积分10
33秒前
34秒前
在水一方应助DRWangZm采纳,获得10
35秒前
alixy完成签到,获得积分10
38秒前
险胜完成签到 ,获得积分10
42秒前
梦想去广州当靓仔完成签到 ,获得积分10
42秒前
奋斗的妙海完成签到 ,获得积分0
43秒前
玲家傻妞完成签到 ,获得积分10
52秒前
bing完成签到 ,获得积分10
55秒前
菠萝完成签到 ,获得积分10
55秒前
皮蛋努力科研完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
moroa完成签到,获得积分10
1分钟前
tangchao完成签到,获得积分10
1分钟前
Driscoll完成签到 ,获得积分10
1分钟前
菠萝完成签到 ,获得积分10
1分钟前
独特的夜阑完成签到 ,获得积分10
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
小新完成签到 ,获得积分10
1分钟前
Tree_完成签到 ,获得积分10
1分钟前
端庄洪纲完成签到 ,获得积分10
1分钟前
执着的忆雪完成签到 ,获得积分10
1分钟前
文献小松鼠完成签到,获得积分10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
和平使命应助科研通管家采纳,获得10
1分钟前
1分钟前
Islay50ppm发布了新的文献求助10
1分钟前
long完成签到 ,获得积分10
1分钟前
Drzhang发布了新的文献求助10
1分钟前
科研完成签到 ,获得积分10
1分钟前
苏州九龙小7完成签到 ,获得积分10
1分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3326800
求助须知:如何正确求助?哪些是违规求助? 2957144
关于积分的说明 8583457
捐赠科研通 2635044
什么是DOI,文献DOI怎么找? 1442338
科研通“疑难数据库(出版商)”最低求助积分说明 668210
邀请新用户注册赠送积分活动 655102