亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity

医学 眼科 裂隙灯 验光服务
作者
Tiarnán D L Keenan,Qingyu Chen,Elvira Agrón,Yih‐Chung Tham,Jocelyn Hui Lin Goh,Xiaofeng Lei,Yi Pin Ng,Yong Liu,Xinxing Xu,Ching‐Yu Cheng,Mukharram M. Bikbov,Jost B. Jonas,S. Bhandari,Geoffrey K. Broadhead,Marcus H. Colyer,J. Corsini,Chantal Cousineau-Krieger,William G. Gensheimer,David Josip Grašić,Tania Lamba
出处
期刊:Ophthalmology [Elsevier]
卷期号:129 (5): 571-584 被引量:57
标识
DOI:10.1016/j.ophtha.2021.12.017
摘要

To develop deep learning models to perform automated diagnosis and quantitative classification of age-related cataract from anterior segment photographs.DeepLensNet was trained by applying deep learning models to the Age-Related Eye Disease Study (AREDS) dataset.A total of 18 999 photographs (6333 triplets) from longitudinal follow-up of 1137 eyes (576 AREDS participants).Deep learning models were trained to detect and quantify nuclear sclerosis (NS; scale 0.9-7.1) from 45-degree slit-lamp photographs and cortical lens opacity (CLO; scale 0%-100%) and posterior subcapsular cataract (PSC; scale 0%-100%) from retroillumination photographs. DeepLensNet performance was compared with that of 14 ophthalmologists and 24 medical students.Mean squared error (MSE).On the full test set, mean MSE for DeepLensNet was 0.23 (standard deviation [SD], 0.01) for NS, 13.1 (SD, 1.6) for CLO, and 16.6 (SD, 2.4) for PSC. On a subset of the test set (substantially enriched for positive cases of CLO and PSC), for NS, mean MSE for DeepLensNet was 0.23 (SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, mean MSE was 53.5 (SD, 14.8), compared with 134.9 (SD, 89.9; P = 0.003) for the ophthalmologists and 433.6 (SD, 962.1; P = 0.0007) for the medical students. For PSC, mean MSE was 171.9 (SD, 38.9), compared with 176.8 (SD, 98.0; P = 0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical students. In external validation on the Singapore Malay Eye Study (sampled to reflect the cataract severity distribution in AREDS), the MSE for DeepSeeNet was 1.27 for NS and 25.5 for PSC.DeepLensNet performed automated and quantitative classification of cataract severity for all 3 types of age-related cataract. For the 2 most common types (NS and CLO), the accuracy was significantly superior to that of ophthalmologists; for the least common type (PSC), it was similar. DeepLensNet may have wide potential applications in both clinical and research domains. In the future, such approaches may increase the accessibility of cataract assessment globally. The code and models are available at https://github.com/ncbi/deeplensnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuki完成签到 ,获得积分10
2秒前
check003完成签到,获得积分10
14秒前
陈尹蓝完成签到 ,获得积分10
41秒前
NexusExplorer应助Vu1nerable采纳,获得10
41秒前
51秒前
zhou发布了新的文献求助10
55秒前
1分钟前
Dasein完成签到 ,获得积分10
1分钟前
1分钟前
zhou完成签到,获得积分20
1分钟前
GPTea应助科研通管家采纳,获得20
1分钟前
1分钟前
万能图书馆应助Vu1nerable采纳,获得10
1分钟前
沉静的安青完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
Vu1nerable发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
gmc完成签到 ,获得积分10
3分钟前
3分钟前
GPTea应助科研通管家采纳,获得20
3分钟前
竹青完成签到 ,获得积分10
4分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5335623
求助须知:如何正确求助?哪些是违规求助? 4473305
关于积分的说明 13921541
捐赠科研通 4367634
什么是DOI,文献DOI怎么找? 2399702
邀请新用户注册赠送积分活动 1392801
关于科研通互助平台的介绍 1364193