DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity

医学 眼科 裂隙灯 验光服务
作者
Tiarnan D L Keenan,Qingyu Chen,Elvira Agrón,Yih‐Chung Tham,Jocelyn Hui Lin Goh,Xiaofeng Lei,Yi Pin Ng,Nan Liu,Xinxing Xu,Ching-Yu Cheng,Mukharram M. Bikbov,Jost B. Jonas,S. Bhandari,Geoffrey K. Broadhead,Marcus H. Colyer,Jonathan Corsini,Chantal Cousineau-Krieger,William G. Gensheimer,David Josip Grašić,T.S. Lamba,M. Teresa Magone,Michele Maiberger,Arnold Oshinsky,Boonkit Purt,Soo Young Shin,Alisa T. Thavikulwat,Zhiyong Lu,Emily Y. Chew,Priscilla Ajilore,Alex Akman,Nadim S. Azar,William S. Azar,Bryan Chan,Victor Cox,Amisha Dave,Rachna Dhanjal,Mary K. Donovan,Maureen C. Farrell,Francisca Finkel,Timothy Goblirsch,Wesley Ha,Christine Hill,Aman Kumar,Kristen J. Kent,Arielle Lee,Pujan R. Patel,David Peprah,Emma Piliponis,Evan B. Selzer,Benjamin Swaby,S.M. Tenney,Alexander Zeleny
出处
期刊:Ophthalmology [Elsevier BV]
卷期号:129 (5): 571-584 被引量:33
标识
DOI:10.1016/j.ophtha.2021.12.017
摘要

To develop deep learning models to perform automated diagnosis and quantitative classification of age-related cataract from anterior segment photographs.DeepLensNet was trained by applying deep learning models to the Age-Related Eye Disease Study (AREDS) dataset.A total of 18 999 photographs (6333 triplets) from longitudinal follow-up of 1137 eyes (576 AREDS participants).Deep learning models were trained to detect and quantify nuclear sclerosis (NS; scale 0.9-7.1) from 45-degree slit-lamp photographs and cortical lens opacity (CLO; scale 0%-100%) and posterior subcapsular cataract (PSC; scale 0%-100%) from retroillumination photographs. DeepLensNet performance was compared with that of 14 ophthalmologists and 24 medical students.Mean squared error (MSE).On the full test set, mean MSE for DeepLensNet was 0.23 (standard deviation [SD], 0.01) for NS, 13.1 (SD, 1.6) for CLO, and 16.6 (SD, 2.4) for PSC. On a subset of the test set (substantially enriched for positive cases of CLO and PSC), for NS, mean MSE for DeepLensNet was 0.23 (SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, mean MSE was 53.5 (SD, 14.8), compared with 134.9 (SD, 89.9; P = 0.003) for the ophthalmologists and 433.6 (SD, 962.1; P = 0.0007) for the medical students. For PSC, mean MSE was 171.9 (SD, 38.9), compared with 176.8 (SD, 98.0; P = 0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical students. In external validation on the Singapore Malay Eye Study (sampled to reflect the cataract severity distribution in AREDS), the MSE for DeepSeeNet was 1.27 for NS and 25.5 for PSC.DeepLensNet performed automated and quantitative classification of cataract severity for all 3 types of age-related cataract. For the 2 most common types (NS and CLO), the accuracy was significantly superior to that of ophthalmologists; for the least common type (PSC), it was similar. DeepLensNet may have wide potential applications in both clinical and research domains. In the future, such approaches may increase the accessibility of cataract assessment globally. The code and models are available at https://github.com/ncbi/deeplensnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
geoyuan发布了新的文献求助10
刚刚
冰渊悬月完成签到,获得积分10
1秒前
随便完成签到,获得积分20
1秒前
all发布了新的文献求助10
2秒前
我的文献呢完成签到 ,获得积分10
2秒前
小胡完成签到,获得积分10
2秒前
3秒前
酸菜炖粉条完成签到,获得积分10
4秒前
orixero应助FF采纳,获得10
4秒前
4秒前
微笑的千山完成签到 ,获得积分10
5秒前
5秒前
科研巨头发布了新的文献求助10
5秒前
6秒前
7秒前
Hello应助张琳琳采纳,获得10
8秒前
vialavilda发布了新的文献求助10
8秒前
小新发布了新的文献求助10
9秒前
充电宝应助111采纳,获得10
10秒前
10秒前
希望天下0贩的0应助all采纳,获得10
11秒前
CodeCraft应助Jiayana采纳,获得30
11秒前
11秒前
坚强南烟发布了新的文献求助10
12秒前
SciGPT应助疯狂的凡柔采纳,获得10
13秒前
沉默小虾米完成签到 ,获得积分10
15秒前
灵巧母鸡完成签到,获得积分20
17秒前
17秒前
17秒前
19秒前
rena关注了科研通微信公众号
19秒前
小姜完成签到 ,获得积分10
20秒前
l玖应助小行星碰碰车采纳,获得10
20秒前
科目三应助vialavilda采纳,获得10
21秒前
Laura567发布了新的文献求助10
22秒前
22秒前
24秒前
24秒前
豆沙包子发布了新的文献求助10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958009
求助须知:如何正确求助?哪些是违规求助? 3504129
关于积分的说明 11117204
捐赠科研通 3235512
什么是DOI,文献DOI怎么找? 1788281
邀请新用户注册赠送积分活动 871191
科研通“疑难数据库(出版商)”最低求助积分说明 802485