DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity

医学 眼科 裂隙灯 验光服务
作者
Tiarnán D L Keenan,Qingyu Chen,Elvira Agrón,Yih‐Chung Tham,Jocelyn Hui Lin Goh,Xiaofeng Lei,Yi Pin Ng,Yong Liu,Xinxing Xu,Ching‐Yu Cheng,Mukharram M. Bikbov,Jost B. Jonas,S. Bhandari,Geoffrey K. Broadhead,Marcus H. Colyer,J. Corsini,Chantal Cousineau-Krieger,William G. Gensheimer,David Josip Grašić,Tania Lamba
出处
期刊:Ophthalmology [Elsevier]
卷期号:129 (5): 571-584 被引量:57
标识
DOI:10.1016/j.ophtha.2021.12.017
摘要

To develop deep learning models to perform automated diagnosis and quantitative classification of age-related cataract from anterior segment photographs.DeepLensNet was trained by applying deep learning models to the Age-Related Eye Disease Study (AREDS) dataset.A total of 18 999 photographs (6333 triplets) from longitudinal follow-up of 1137 eyes (576 AREDS participants).Deep learning models were trained to detect and quantify nuclear sclerosis (NS; scale 0.9-7.1) from 45-degree slit-lamp photographs and cortical lens opacity (CLO; scale 0%-100%) and posterior subcapsular cataract (PSC; scale 0%-100%) from retroillumination photographs. DeepLensNet performance was compared with that of 14 ophthalmologists and 24 medical students.Mean squared error (MSE).On the full test set, mean MSE for DeepLensNet was 0.23 (standard deviation [SD], 0.01) for NS, 13.1 (SD, 1.6) for CLO, and 16.6 (SD, 2.4) for PSC. On a subset of the test set (substantially enriched for positive cases of CLO and PSC), for NS, mean MSE for DeepLensNet was 0.23 (SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, mean MSE was 53.5 (SD, 14.8), compared with 134.9 (SD, 89.9; P = 0.003) for the ophthalmologists and 433.6 (SD, 962.1; P = 0.0007) for the medical students. For PSC, mean MSE was 171.9 (SD, 38.9), compared with 176.8 (SD, 98.0; P = 0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical students. In external validation on the Singapore Malay Eye Study (sampled to reflect the cataract severity distribution in AREDS), the MSE for DeepSeeNet was 1.27 for NS and 25.5 for PSC.DeepLensNet performed automated and quantitative classification of cataract severity for all 3 types of age-related cataract. For the 2 most common types (NS and CLO), the accuracy was significantly superior to that of ophthalmologists; for the least common type (PSC), it was similar. DeepLensNet may have wide potential applications in both clinical and research domains. In the future, such approaches may increase the accessibility of cataract assessment globally. The code and models are available at https://github.com/ncbi/deeplensnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
艾妮吗完成签到,获得积分10
4秒前
gtflbk发布了新的文献求助100
5秒前
WZH完成签到,获得积分10
5秒前
细心的代天完成签到 ,获得积分10
6秒前
无聊的朋友完成签到 ,获得积分10
6秒前
辛木完成签到 ,获得积分10
6秒前
KKKZ发布了新的文献求助10
7秒前
XIXI完成签到,获得积分10
9秒前
panisa鹅完成签到,获得积分10
10秒前
WILD完成签到,获得积分10
11秒前
沉静问芙完成签到 ,获得积分10
11秒前
小星完成签到 ,获得积分10
14秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
15秒前
hahaha完成签到,获得积分10
16秒前
JamesPei应助一个西藏采纳,获得10
16秒前
下课闹闹完成签到,获得积分10
17秒前
17秒前
Chuncheng发布了新的文献求助10
17秒前
zyyy应助Amber采纳,获得30
18秒前
19秒前
李健应助kelexh采纳,获得10
19秒前
aliderichang发布了新的文献求助20
20秒前
20秒前
21秒前
22秒前
wangzhenghua完成签到 ,获得积分10
22秒前
弄香发布了新的文献求助10
23秒前
23秒前
chenchunlan96发布了新的文献求助10
23秒前
Jasper应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
Qin应助科研通管家采纳,获得20
24秒前
wanci应助科研通管家采纳,获得10
24秒前
ding应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832