Deep Learning for Detecting Pneumothorax on Chest Radiographs after Needle Biopsy: Clinical Implementation

医学 气胸 射线照相术 计算机辅助设计 放射科 胸片 回顾性队列研究 外科
作者
Wonju Hong,Eui Jin Hwang,Jong Hyuk Lee,Jongsoo Park,Jin Mo Goo,Chan Woo Park
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/radiol.211706
摘要

Background Accurate detection of pneumothorax on chest radiographs, the most common complication of percutaneous transthoracic needle biopsies (PTNBs), is not always easy in practice. A computer-aided detection (CAD) system may help detect pneumothorax. Purpose To investigate whether a deep learning-based CAD system can improve detection performance for pneumothorax on chest radiographs after PTNB in clinical practice. Materials and Methods A CAD system for post-PTNB pneumothorax detection on chest radiographs was implemented in an institution in February 2020. This retrospective cohort study consecutively included chest radiographs interpreted with CAD assistance (CAD-applied group; February 2020 to November 2020) and those interpreted before implementation (non-CAD group; January 2018 to January 2020). The reference standard was defined by consensus reading by two radiologists. The diagnostic accuracy for pneumothorax was compared between the two groups using generalized estimating equations. Matching was performed according to whether the radiograph reader and PTNB operator were the same using the greedy method. Results A total of 676 radiographs from 655 patients (mean age: 67 years ± 11; 390 men) in the CAD-applied group and 676 radiographs from 664 patients (mean age: 66 years ± 12; 400 men) in the non-CAD group were included. The incidence of pneumothorax was 18.2% (123 of 676 radiographs) in the CAD-applied group and 22.5% (152 of 676 radiographs) in the non-CAD group (P = .05). The CAD-applied group showed higher sensitivity (85.4% vs 67.1%), negative predictive value (96.8% vs 91.3%), and accuracy (96.8% vs 92.3%) than the non-CAD group (all P < .001). The sensitivity for a small amount of pneumothorax improved in the CAD-applied group (pneumothorax of <10%: 74.5% vs 51.4%, P = .009; pneumothorax of 10%-15%: 92.7% vs 70.2%, P = .008). Among patients with pneumothorax, 34 of 655 (5.0%) in the non-CAD group and 16 of 664 (2.4%) in the CAD-applied group (P = .009) required subsequent drainage catheter insertion. Conclusion A deep learning-based computer-aided detection system improved the detection performance for pneumothorax on chest radiographs after lung biopsy. © RSNA, 2022 See also the editorial by Schiebler and Hartung in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星子发布了新的文献求助10
2秒前
白芷烟发布了新的文献求助10
3秒前
LT发布了新的文献求助10
3秒前
美好南晴发布了新的文献求助10
4秒前
4秒前
FashionBoy应助小青菜采纳,获得10
4秒前
5秒前
6秒前
6秒前
7秒前
仔仔完成签到 ,获得积分10
7秒前
8秒前
8秒前
YQ完成签到 ,获得积分20
10秒前
10秒前
星星子发布了新的文献求助10
11秒前
11秒前
SHYSHYLONG发布了新的文献求助10
12秒前
12秒前
吃不起橘子了完成签到,获得积分10
12秒前
14秒前
米一早完成签到,获得积分10
15秒前
17秒前
香雪若梅完成签到,获得积分10
17秒前
19秒前
19秒前
19秒前
yuyu完成签到 ,获得积分10
19秒前
李山鬼发布了新的文献求助10
19秒前
20秒前
一一一完成签到,获得积分10
20秒前
Jana应助queer采纳,获得10
23秒前
无理发布了新的文献求助10
23秒前
24秒前
华华发布了新的文献求助10
24秒前
tangjun发布了新的文献求助10
24秒前
24秒前
一一一发布了新的文献求助10
24秒前
不知名网友完成签到,获得积分10
25秒前
L.C.完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293