Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 1: Synoptic circulation patterns and pollution

环境科学 三角洲 气候学 北京 污染物 大气环流 污染 中国 空气污染 长江 循环(流体动力学) 天气尺度气象学 气象学 地理 地质学 生态学 化学 物理 考古 有机化学 航空航天工程 工程类 生物 热力学
作者
Sunling Gong,Yilin Liu,Jianjun He,Lei Zhang,Shuhua Lu,Xiaoye Zhang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:815: 152770-152770 被引量:41
标识
DOI:10.1016/j.scitotenv.2021.152770
摘要

A multiscale analysis of meteorological trends was carried out to investigate the impacts of the large-scale circulation types as well as the local-scale key weather elements on the complex air pollutants, i.e. PM2.5 and O3 in China. As the first paper in the series, the relationship between synoptic circulation patterns and pollution was investigated. Six types of circulation patterns are defined and clustered to correlate with the observed pollutant levels, resulting in the identification of the impact similarity and difference of circulations on PM2.5 and O3 for three regions in China, i.e., the BTH (Beijing, Tianjin and Hebei), YRD (Yangtze River Delta) and PRD (Peral River Delta), from 2013 to 2020. It is found that the six clustered circulation patterns were able to classify the circulation patterns that influence the pollutants and yield significant correlations with O3 and PM2.5 in three regions. The major circulation patterns governing the heavy PM2.5 and O3 were identified separately for each region and found to show inter-annual variabilities. Composite analysis indicated that there were some circulation patterns that caused the dual-highs of PM2.5 and O3 with about 13%, 8% and 3% occurrences during the period of 2013 to 2020 in Beijing, Shanghai and Guangzhou, respectively. The key weather elements for each type of circulation pattern were also identified. A detailed study of the impacts of key weather elements and emissions on the PM2.5 and O3 trends will accompany this paper (Gong et al., 2022).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈哈哈完成签到,获得积分10
刚刚
鱼大大关注了科研通微信公众号
刚刚
刚刚
刻苦的丹妗完成签到,获得积分10
1秒前
dscvigykyob完成签到,获得积分10
1秒前
1秒前
小默完成签到,获得积分10
1秒前
了吧完成签到,获得积分10
3秒前
缓慢修杰完成签到,获得积分10
3秒前
4秒前
15919229415完成签到,获得积分10
4秒前
yull完成签到,获得积分10
4秒前
林登万发布了新的文献求助10
6秒前
huaner完成签到,获得积分10
6秒前
xi关注了科研通微信公众号
6秒前
Steve完成签到,获得积分10
6秒前
田田完成签到,获得积分10
6秒前
7秒前
tiantian完成签到,获得积分10
7秒前
龙凌音完成签到,获得积分10
7秒前
Sdpol完成签到,获得积分10
7秒前
CodeCraft应助guajiguaji采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
Lucia发布了新的文献求助10
8秒前
orixero应助优秀的凉面采纳,获得10
9秒前
汪蔓蔓完成签到 ,获得积分10
9秒前
sai完成签到,获得积分10
9秒前
慕容绝义完成签到,获得积分10
10秒前
lcx完成签到,获得积分10
10秒前
Brad_AN完成签到,获得积分10
10秒前
彩色雪柳完成签到,获得积分10
11秒前
阿紫发布了新的文献求助10
11秒前
ppg123应助猛犸象冲冲冲采纳,获得10
12秒前
辛勤安梦完成签到,获得积分10
13秒前
阿峰完成签到,获得积分10
14秒前
orixero应助笑点低菲鹰采纳,获得10
14秒前
直率翠绿完成签到,获得积分10
14秒前
大模型应助欣喜代秋采纳,获得10
14秒前
LlieG完成签到,获得积分10
14秒前
ShiBoSong完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715880
求助须知:如何正确求助?哪些是违规求助? 5237687
关于积分的说明 15275397
捐赠科研通 4866497
什么是DOI,文献DOI怎么找? 2613022
邀请新用户注册赠送积分活动 1563137
关于科研通互助平台的介绍 1520689