mTORC1型
癌症研究
自噬
细胞生物学
癌症干细胞
癌细胞
肝癌
癌症
PI3K/AKT/mTOR通路
细胞培养
生物
干细胞
化学
细胞凋亡
肝细胞癌
信号转导
生物化学
遗传学
作者
Raymond Wu,Ramachandran Murali,Yasuaki Kabe,Samuel W. French,Yi‐Ming Chiang,Siyu Liu,Linda Sher,Clay C. C. Wang,Stan G. Louie,Hidekazu Tsukamoto
出处
期刊:Hepatology
[Wiley]
日期:2018-05-05
卷期号:68 (5): 1726-1740
被引量:67
摘要
Drug resistance is a major problem in the treatment of liver cancer. Mammalian Target of Rapamycin 1 (mTORC1) inhibitors have been tested for the treatment of liver cancer based on hyperactive mTOR in this malignancy. However, their clinical trials showed poor outcome, most likely due to their ability to upregulate CD133 and promote chemoresistance. The CD133 + tumor–initiating stem cell–like cells (TICs) isolated from mouse and human liver tumors are chemoresistant, and identification of an approach to abrogate this resistance is desired. In search of a compound that rescinds resistance of TICs to mTORC1 inhibition and improves chemotherapy, we identified baicalein (BC), which selectively chemosensitizes TICs and the human hepatocellular carcinoma (HCC) cell line Huh7 cells but not mouse and human primary hepatocytes. Nanobead pull‐down and mass‐spectrometric analysis, biochemical binding assay, and three‐dimensional computational modeling studies reveal BC's ability to competitively inhibit guanosine triphosphate binding of SAR1B guanosine triphosphatase, which is essential for autophagy. Indeed, BC suppresses autophagy induced by an mTORC1 inhibitor and synergizes cell death caused by mTORC1 inhibition in TIC and Huh7 spheroid formation and in the patient‐derived xenograft model of HCC. The BC‐induced chemosensitization is rescued by SAR1B expression and phenocopied by SAR1B knockdown in cancer cells treated with a mTORC1 inhibitor. Conclusion : These results identify SAR1B as a target in liver TICs and HCC cells resistant to mTORC1 inhibition.
科研通智能强力驱动
Strongly Powered by AbleSci AI