牙周膜干细胞
软骨发生
间充质干细胞
基因敲除
化学
细胞生物学
硫氧化物9
再生(生物学)
小RNA
生物
碱性磷酸酶
基因表达
生物化学
基因
酶
细胞凋亡
作者
Pingting Wang,Yanjing Li,Tao Meng,Junjiang Zhang,Yuansong Wei,Zhaosong Meng,Yunfeng Lin,Dayong Liu,Lei Sui
摘要
Abstract Objectives KDM6A has been demonstrated critical in the regulation of cell fates. However, whether KDM6A is involved in cartilage formation remains unclear. In this study, we investigated the role of KDM6A in chondrogenic differentiation of PDLSCs, as well as the underlying epigenetic mechanisms. Methods KDM6A shRNA was transfected into PDLSCs by lentivirus. The chondrogenic differentiation potential of PDLSCs was assessed by Alcian blue staining. Immunofluorescence was performed to demonstrate H3K27me3 and H3K4me3 levels during chondrogenesis. SOX9, Col2a1, ACAN and miRNAs (miR‐29a, miR‐204, miR‐211) were detected by real‐time RT‐PCR. Western blot was performed to evaluate SOX9, H3K27me3 and H3K4me3. Results The production of proteoglycans in PDLSCs was decreased after knockdown of KDM6A. Depletion of KDM6A inhibited the expression of SOX9, Col2a1, ACAN and resulted in increased H3K27me3 and decreased H3K4me3 levels. EZH2 inhibitor rescued the chondrogenic potential of PDLSCs after knockdown of KDM6A by regulating H3K27me3. Additionally, miR‐29a, miR‐204 and miR‐211 were also involved in the process of PDLSCs chondrogenesis. Conclusions KDM6A is required in chondrogenic differentiation of PDLSCs by demethylation of H3K27me3, and EZH2 inhibitor could rescue chondrogenesis of PDLSCs after knockdown of KDM6A. It could be inferred that upregulation of KDM6A or application of EZH2 inhibitor might improve mesenchymal stem cell mediated cartilage regeneration in inflammatory tissue destruction such as osteoarthritis.
科研通智能强力驱动
Strongly Powered by AbleSci AI