Structure Prediction for Gland Segmentation With Hand-Crafted and Deep Convolutional Features

人工智能 计算机科学 模式识别(心理学) 分割 卷积神经网络 滑动窗口协议 图像分割 聚类分析 像素 尺度空间分割 窗口(计算) 操作系统
作者
Siyamalan Manivannan,Wenqi Li,Jianguo Zhang,Emanuele Trucco,S.J. McKenna
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (1): 210-221 被引量:51
标识
DOI:10.1109/tmi.2017.2750210
摘要

We present a novel method to segment instances of glandular structures from colon histopathology images. We use a structure learning approach which represents local spatial configurations of class labels, capturing structural information normally ignored by sliding-window methods. This allows us to reveal different spatial structures of pixel labels (e.g., locations between adjacent glands, or far from glands), and to identify correctly neighboring glandular structures as separate instances. Exemplars of label structures are obtained via clustering and used to train support vector machine classifiers. The label structures predicted are then combined and post-processed to obtain segmentation maps. We combine hand-crafted, multi-scale image features with features computed by a deep convolutional network trained to map images to segmentation maps. We evaluate the proposed method on the public domain GlaS data set, which allows extensive comparisons with recent, alternative methods. Using the GlaS contest protocol, our method achieves the overall best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周小鱼完成签到 ,获得积分10
2秒前
7秒前
15秒前
老张完成签到,获得积分10
21秒前
23秒前
zhugao完成签到,获得积分10
25秒前
28秒前
南风知我意完成签到,获得积分10
31秒前
朴实寻琴完成签到 ,获得积分10
31秒前
可可可爱完成签到 ,获得积分10
34秒前
lsy完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
41秒前
42秒前
42秒前
hwen1998完成签到 ,获得积分10
45秒前
46秒前
47秒前
wwb发布了新的文献求助10
50秒前
51秒前
53秒前
LHT完成签到,获得积分10
54秒前
落寞凌波发布了新的文献求助10
58秒前
桐桐应助幸福的杨小夕采纳,获得10
1分钟前
韩麒嘉完成签到 ,获得积分10
1分钟前
聪慧的凝海完成签到 ,获得积分0
1分钟前
1分钟前
wwb发布了新的文献求助10
1分钟前
phil完成签到 ,获得积分10
1分钟前
1分钟前
高高菠萝完成签到 ,获得积分10
1分钟前
滴滴滴完成签到 ,获得积分10
1分钟前
yangsi完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
酷炫葵阴发布了新的文献求助10
1分钟前
ORANGE完成签到,获得积分10
1分钟前
思源应助松松采纳,获得20
1分钟前
共享精神应助酷炫葵阴采纳,获得10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022