Accelerating the discovery of materials for clean energy in the era of smart automation

步伐 软件部署 自动化 机器人学 计算机科学 吞吐量 人工智能 制造工程 系统工程 纳米技术 风险分析(工程) 机器人 工程类 电信 软件工程 机械工程 业务 材料科学 地理 无线 大地测量学
作者
Daniel P. Tabor,Loı̈c M. Roch,Semion K. Saikin,Christoph Kreisbeck,Dennis Sheberla,Joseph H. Montoya,Shyam Dwaraknath,Muratahan Aykol,C. Ortiz,Hermann Tribukait,Carlos Amador‐Bedolla,Christoph J. Brabec,Benji Maruyama,Kristin A. Persson,Alán Aspuru‐Guzik
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:3 (5): 5-20 被引量:641
标识
DOI:10.1038/s41578-018-0005-z
摘要

The discovery and development of novel materials in the field of energy are essential to accelerate the transition to a low-carbon economy. Bringing recent technological innovations in automation, robotics and computer science together with current approaches in chemistry, materials synthesis and characterization will act as a catalyst for revolutionizing traditional research and development in both industry and academia. This Perspective provides a vision for an integrated artificial intelligence approach towards autonomous materials discovery, which, in our opinion, will emerge within the next 5 to 10 years. The approach we discuss requires the integration of the following tools, which have already seen substantial development to date: high-throughput virtual screening, automated synthesis planning, automated laboratories and machine learning algorithms. In addition to reducing the time to deployment of new materials by an order of magnitude, this integrated approach is expected to lower the cost associated with the initial discovery. Thus, the price of the final products (for example, solar panels, batteries and electric vehicles) will also decrease. This in turn will enable industries and governments to meet more ambitious targets in terms of reducing greenhouse gas emissions at a faster pace. The discovery and development of advanced materials are imperative for the clean energy sector. We envision that a closed-loop approach, which combines high-throughput computation, artificial intelligence and advanced robotics, will sizeably reduce the time to deployment and the costs associated with materials development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyyyy发布了新的文献求助10
刚刚
心空完成签到,获得积分10
刚刚
顾矜应助科学家采纳,获得10
刚刚
前尘似梦完成签到 ,获得积分10
1秒前
curtisness应助zyyyy采纳,获得10
6秒前
Ava应助zyyyy采纳,获得10
6秒前
喜悦的虔发布了新的文献求助10
7秒前
研友_VZG7GZ应助研友_Z6Qrbn采纳,获得10
9秒前
9秒前
繁荣的土豆完成签到,获得积分20
16秒前
20秒前
充电宝应助七大洋的风采纳,获得10
21秒前
Owen应助wfjj采纳,获得10
22秒前
26秒前
26秒前
脑洞疼应助xiaoyao采纳,获得10
26秒前
Jeffrey完成签到,获得积分10
27秒前
喜悦的虔发布了新的文献求助10
27秒前
慕青应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
gougou发布了新的文献求助10
32秒前
英俊的铭应助zjw采纳,获得10
32秒前
爆米花应助BIGer采纳,获得10
32秒前
33秒前
35秒前
36秒前
curtisness应助喜悦的虔采纳,获得10
37秒前
热情铭完成签到 ,获得积分10
37秒前
优秀送终完成签到 ,获得积分10
37秒前
pupu完成签到,获得积分10
37秒前
温眸发布了新的文献求助10
38秒前
38秒前
xiaoyao发布了新的文献求助10
39秒前
小猫最受发布了新的文献求助10
40秒前
40秒前
40秒前
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359630
求助须知:如何正确求助?哪些是违规求助? 2982355
关于积分的说明 8703259
捐赠科研通 2664021
什么是DOI,文献DOI怎么找? 1458787
科研通“疑难数据库(出版商)”最低求助积分说明 675243
邀请新用户注册赠送积分活动 666331