SV-RCNet: Workflow Recognition From Surgical Videos Using Recurrent Convolutional Network

计算机科学 判别式 卷积神经网络 工作流程 人工智能 循环神经网络 推论 背景(考古学) 深度学习 机器学习 模式识别(心理学) 人工神经网络 数据库 生物 古生物学
作者
Yueming Jin,Qi Dou,Hao Chen,Lequan Yu,Jing Qin,Chi‐Wing Fu,Pheng‐Ann Heng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (5): 1114-1126 被引量:248
标识
DOI:10.1109/tmi.2017.2787657
摘要

We propose an analysis of surgical videos that is based on a novel recurrent convolutional network (SV-RCNet), specifically for automatic workflow recognition from surgical videos online, which is a key component for developing the context-aware computer-assisted intervention systems. Different from previous methods which harness visual and temporal information separately, the proposed SV-RCNet seamlessly integrates a convolutional neural network (CNN) and a recurrent neural network (RNN) to form a novel recurrent convolutional architecture in order to take full advantages of the complementary information of visual and temporal features learned from surgical videos. We effectively train the SV-RCNet in an end-to-end manner so that the visual representations and sequential dynamics can be jointly optimized in the learning process. In order to produce more discriminative spatio-temporal features, we exploit a deep residual network (ResNet) and a long short term memory (LSTM) network, to extract visual features and temporal dependencies, respectively, and integrate them into the SV-RCNet. Moreover, based on the phase transition-sensitive predictions from the SV-RCNet, we propose a simple yet effective inference scheme, namely the prior knowledge inference (PKI), by leveraging the natural characteristic of surgical video. Such a strategy further improves the consistency of results and largely boosts the recognition performance. Extensive experiments have been conducted with the MICCAI 2016 Modeling and Monitoring of Computer Assisted Interventions Workflow Challenge dataset and Cholec80 dataset to validate SV-RCNet. Our approach not only achieves superior performance on these two datasets but also outperforms the state-of-the-art methods by a significant margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尹静涵完成签到 ,获得积分10
1秒前
1秒前
多情自古空余恨完成签到,获得积分10
1秒前
luofeiyu完成签到,获得积分10
1秒前
小芒果完成签到,获得积分10
2秒前
3秒前
顾矜应助Lee采纳,获得10
3秒前
ForRITZ完成签到,获得积分20
3秒前
深情安青应助风趣翰采纳,获得10
3秒前
4秒前
4秒前
叶sir发布了新的文献求助10
4秒前
开放菀发布了新的文献求助10
5秒前
yjj发布了新的文献求助10
6秒前
merrylake发布了新的文献求助10
6秒前
7秒前
杀殿完成签到 ,获得积分10
8秒前
阿水完成签到,获得积分10
8秒前
粥粥完成签到 ,获得积分10
9秒前
眼睛大紊发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
guozizi完成签到,获得积分10
15秒前
Fazie完成签到 ,获得积分10
16秒前
16秒前
17秒前
Youngman完成签到,获得积分10
17秒前
17秒前
Martin发布了新的文献求助10
17秒前
眼睛大紊完成签到,获得积分10
17秒前
17秒前
山复尔尔发布了新的文献求助10
17秒前
虚拟莫茗完成签到,获得积分10
17秒前
华仔应助IVnotfound采纳,获得10
17秒前
19秒前
sans发布了新的文献求助20
19秒前
20秒前
且听风吟发布了新的文献求助10
21秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327916
求助须知:如何正确求助?哪些是违规求助? 2958108
关于积分的说明 8589214
捐赠科研通 2636402
什么是DOI,文献DOI怎么找? 1442937
科研通“疑难数据库(出版商)”最低求助积分说明 668449
邀请新用户注册赠送积分活动 655663