已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SV-RCNet: Workflow Recognition From Surgical Videos Using Recurrent Convolutional Network

计算机科学 判别式 卷积神经网络 工作流程 人工智能 循环神经网络 推论 背景(考古学) 深度学习 机器学习 模式识别(心理学) 人工神经网络 数据库 生物 古生物学
作者
Yueming Jin,Qi Dou,Hao Chen,Lequan Yu,Jing Qin,Chi‐Wing Fu,Pheng‐Ann Heng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (5): 1114-1126 被引量:248
标识
DOI:10.1109/tmi.2017.2787657
摘要

We propose an analysis of surgical videos that is based on a novel recurrent convolutional network (SV-RCNet), specifically for automatic workflow recognition from surgical videos online, which is a key component for developing the context-aware computer-assisted intervention systems. Different from previous methods which harness visual and temporal information separately, the proposed SV-RCNet seamlessly integrates a convolutional neural network (CNN) and a recurrent neural network (RNN) to form a novel recurrent convolutional architecture in order to take full advantages of the complementary information of visual and temporal features learned from surgical videos. We effectively train the SV-RCNet in an end-to-end manner so that the visual representations and sequential dynamics can be jointly optimized in the learning process. In order to produce more discriminative spatio-temporal features, we exploit a deep residual network (ResNet) and a long short term memory (LSTM) network, to extract visual features and temporal dependencies, respectively, and integrate them into the SV-RCNet. Moreover, based on the phase transition-sensitive predictions from the SV-RCNet, we propose a simple yet effective inference scheme, namely the prior knowledge inference (PKI), by leveraging the natural characteristic of surgical video. Such a strategy further improves the consistency of results and largely boosts the recognition performance. Extensive experiments have been conducted with the MICCAI 2016 Modeling and Monitoring of Computer Assisted Interventions Workflow Challenge dataset and Cholec80 dataset to validate SV-RCNet. Our approach not only achieves superior performance on these two datasets but also outperforms the state-of-the-art methods by a significant margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoe_Zhang完成签到 ,获得积分10
1秒前
jungle完成签到 ,获得积分10
2秒前
曹文鹏完成签到 ,获得积分10
2秒前
明明完成签到 ,获得积分10
3秒前
雷清宇发布了新的文献求助10
3秒前
zz包子发布了新的文献求助30
3秒前
于清绝完成签到 ,获得积分10
3秒前
火辣蛤蟆完成签到,获得积分10
5秒前
优雅柏柳完成签到,获得积分20
5秒前
shame完成签到 ,获得积分10
6秒前
司空若剑完成签到,获得积分10
7秒前
朝闻道完成签到 ,获得积分10
9秒前
RONG完成签到 ,获得积分10
10秒前
kenti2023完成签到 ,获得积分10
12秒前
Iris完成签到 ,获得积分10
12秒前
隐形曼青应助midokaori采纳,获得10
14秒前
15秒前
jacob258完成签到 ,获得积分10
15秒前
戈屿完成签到 ,获得积分10
15秒前
16秒前
16秒前
沐颜完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
zz包子完成签到,获得积分10
17秒前
19秒前
顾矜应助xueshanfeihu采纳,获得30
19秒前
达八八八完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
山复尔尔完成签到 ,获得积分10
21秒前
Nancy完成签到,获得积分10
21秒前
22秒前
midokaori完成签到,获得积分10
23秒前
24秒前
ESLG发布了新的文献求助10
24秒前
littlechu发布了新的文献求助30
25秒前
rudjs发布了新的文献求助30
25秒前
midokaori发布了新的文献求助10
26秒前
fyjlfy完成签到 ,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956932
求助须知:如何正确求助?哪些是违规求助? 3502968
关于积分的说明 11110867
捐赠科研通 3233954
什么是DOI,文献DOI怎么找? 1787676
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802223