Day-ahead electricity price forecasting via the application of artificial neural network based models

电价预测 盈利能力指数 人工神经网络 灵活性(工程) 电力市场 计算机科学 聚类分析 离群值 运筹学 人工智能 经济 工程类 财务 电气工程 管理
作者
Ioannis P. Panapakidis,Athanasios Dagoumas
出处
期刊:Applied Energy [Elsevier BV]
卷期号:172: 132-151 被引量:276
标识
DOI:10.1016/j.apenergy.2016.03.089
摘要

Traditionally, short-term electricity price forecasting has been essential for utilities and generation companies. However, the deregulation of electricity markets created a competitive environment and the introduction of new market participants, such as the retailers and aggregators, whose economic viability and profitability highly depends on the spot market price patterns. The aim of this study is to examine artificial neural network (ANN) based models for Day-ahead price forecasting. Specifically, the models refer to the sole application of ANNs or to hybrid models, where the ANN is combined with clustering algorithm. The training data are clustered in homogenous groups and for each cluster, a dedicated forecaster is employed. The proposed models are characterized by comprehensive operation and by high level of flexibility; different inputs can be taken under consideration and different ANN topologies can be examined. The models are tested on a data set that consists of atypical price patterns and many outliers. This approach makes the price forecasting problem a more challenging task, providing evidence that the proposed models can be considered as useful and robust forecasting tools to the actual needs of market participants, including the traditional generation companies and self-producers, but also the retailers/suppliers and aggregators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
天天快乐应助xtt采纳,获得10
1秒前
bkagyin应助高工采纳,获得10
1秒前
VvV完成签到,获得积分10
1秒前
1秒前
英俊的铭应助kzkz采纳,获得10
2秒前
2秒前
2秒前
Hello应助deletelzr采纳,获得20
3秒前
华北走地鸡完成签到,获得积分10
3秒前
爆米花应助单纯的乐枫采纳,获得10
5秒前
ding应助哆1627_采纳,获得10
5秒前
FashionBoy应助陈皮泡泡糖采纳,获得10
5秒前
5秒前
齐羽完成签到,获得积分10
6秒前
Xiaojiu发布了新的文献求助10
6秒前
Jefferson完成签到,获得积分10
6秒前
言言完成签到,获得积分10
6秒前
Mrwang完成签到,获得积分10
7秒前
乐乐应助陶醉的迎海采纳,获得10
7秒前
Szj发布了新的文献求助10
7秒前
7秒前
义气猫咪发布了新的文献求助10
8秒前
Lucas应助电闪采纳,获得10
8秒前
9秒前
9秒前
Dante完成签到,获得积分10
9秒前
隐形曼青应助Gser采纳,获得10
9秒前
欣慰元菱发布了新的文献求助10
10秒前
htt完成签到,获得积分10
10秒前
苹果千柔发布了新的文献求助10
10秒前
10秒前
zzz完成签到,获得积分10
10秒前
11秒前
11秒前
远_09完成签到 ,获得积分10
11秒前
无奈冥完成签到,获得积分10
11秒前
kkkkk发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514