Bioinspired interactive neuromorphic devices

神经形态工程学 冯·诺依曼建筑 计算机体系结构 计算机科学 记忆电阻器 人机交互 人工智能 人工神经网络 电子工程 工程类 操作系统
作者
Jinran Yu,Yi-Fei Wang,Shanshan Qin,Guoyun Gao,Chong Xu,Zhong Lin Wang,Qijun Sun
出处
期刊:Materials Today [Elsevier BV]
卷期号:60: 158-182 被引量:94
标识
DOI:10.1016/j.mattod.2022.09.012
摘要

The performance of conventional computer based on von Neumann architecture is limited due to the physical separation of memory and processor. By synergistically integrating various sensors with synaptic devices, recently emerging interactive neuromorphic devices can directly sense/store/process various stimuli information from external environments and implement functions of perception, learning, memory, and computation. In this review, we present the basic model of bioinspired interactive neuromorphic devices and discuss the performance metrics. Next, we summarize the recent progress and development of bioinspired interactive neuromorphic devices, which are classified into neuromorphic tactile systems, visual systems, auditory systems, and multisensory system. They are discussed in detail from the aspects of materials, device architectures, operating mechanisms, synaptic plasticity, and potential applications. Additionally, the bioinspired interactive neuromorphic devices that can fuse multiple/mixed sensing signals are proposed to address more realistic and sophisticated problems. Finally, we discuss the pros and cons regarding to the computing neurons and integrating sensory neurons and deliver the perspectives on interactive neuromorphic devices at the material, device, network, and system levels. It is believed the neuromorphic devices can provide promising solutions to next generation of interactive sensation/memory/computation toward the development of multimodal, low-power, and large-scale intelligent systems endowed with neuromorphic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助haiwei采纳,获得10
1秒前
hb完成签到,获得积分10
2秒前
wml发布了新的文献求助10
2秒前
3秒前
shepherd完成签到,获得积分10
5秒前
草莓熊和他的豆角完成签到,获得积分10
5秒前
6秒前
vvvaee完成签到 ,获得积分10
8秒前
单薄的夜南应助墨菲特采纳,获得10
9秒前
9秒前
虚心的石头关注了科研通微信公众号
9秒前
9秒前
丘比特应助秦玉蓉采纳,获得10
10秒前
FashionBoy应助智慧女孩采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
Ava应助冰千蕙采纳,获得10
12秒前
lotu_fr完成签到,获得积分10
13秒前
英姑应助赵嘉钰采纳,获得10
14秒前
充电宝应助大力的诗蕾采纳,获得10
14秒前
iui飞驳回了大个应助
16秒前
16秒前
16秒前
Jason完成签到,获得积分10
16秒前
顺心火龙果完成签到,获得积分10
19秒前
murpuy完成签到,获得积分10
19秒前
狂野忆文发布了新的文献求助10
20秒前
狂野忆文发布了新的文献求助10
20秒前
在水一方应助qq采纳,获得10
20秒前
狂野忆文发布了新的文献求助10
20秒前
小青龙发布了新的文献求助10
21秒前
司徒文青应助Lucas采纳,获得30
21秒前
22秒前
wei完成签到,获得积分20
24秒前
24秒前
阿Q完成签到,获得积分10
25秒前
25秒前
26秒前
宇宙第一帅发布了新的文献求助200
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891