Multi-source data integration for explainable miRNA-driven drug discovery

计算机科学 药物发现 数据集成 数据发现 数据科学 开源 计算生物学 数据挖掘 万维网 生物信息学 生物 程序设计语言 元数据 软件
作者
Zhen Li,Qingquan Liao,Yan‐Fang Sang,Peng Xu,Linlin Zhuo,Xiangzheng Fu,Quan Zou
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:160: 109-119
标识
DOI:10.1016/j.future.2024.05.055
摘要

Explainable drug discovery driven by miRNA offers substantial application potential due to the high targetability of miRNAs. Despite their effectiveness, the current graph neural network (GNN)-based methods encounters three significant challenges. Initially, GNN-based prediction models, disseminating messages throughout the miRNA-disease graph, are susceptible to "over-smoothing". Secondly, these approaches frequently pinpoint potential miRNA drugs through established miRNA-disease associations (MDAs), neglecting the possible interdependence between unvalidated miRNAs and diseases. Thirdly, the lack of interpretability in these models, coupled with their dependence on specific dataset training, leads to suboptimal generalization capabilities. We present MS-EMD, an explainable model for miRNA-driven drug discovery that integrates subgraph estimation with an energy-constrained diffusion approach. This model aims to accurately forecast potential miRNA drugs by analyzing data from both local and global viewpoints. The MS-EMD model utilizes subgraph estimation to aggregate and update node representations using local subgraphs, thereby preventing over-smoothing. Simultaneously, it unveils potential miRNA-disease dependencies through a global attention mechanism driven by an energy-constrained diffusion process, improving model interpretability. Furthermore, we employ a data fusion technology that integrates diverse similarity data to strengthen the initial representations of miRNAs and diseases. Through various comparison and ablation studies, we verified the MS-EMD model's efficiency and stability, highlighting its potential as an explainable tool for miRNA-driven drug discovery. Our code and data are available at: https://github.com/lizhen5000/MS-EMD.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
bkagyin应助感动的寒风采纳,获得10
刚刚
无花果应助小高采纳,获得10
刚刚
刚刚
1秒前
Vanni完成签到,获得积分10
1秒前
Ava应助可靠大侠采纳,获得10
1秒前
阿冰完成签到,获得积分10
1秒前
kaii完成签到,获得积分10
1秒前
33333发布了新的文献求助10
1秒前
zhanghuan发布了新的文献求助30
2秒前
科研通AI5应助xyfwz采纳,获得10
2秒前
mia发布了新的文献求助10
2秒前
3秒前
zhongu发布了新的文献求助10
4秒前
4秒前
gxx完成签到,获得积分10
4秒前
kaii发布了新的文献求助10
4秒前
zho应助sunshine采纳,获得10
5秒前
小王发布了新的文献求助10
5秒前
烟花应助zzz采纳,获得10
6秒前
6秒前
7秒前
7秒前
科研通AI5应助王皓采纳,获得10
7秒前
Daniel发布了新的文献求助10
7秒前
7秒前
GGY完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
华仔应助敬老院N号采纳,获得10
8秒前
上官若男应助敬老院N号采纳,获得10
8秒前
Jasper应助敬老院N号采纳,获得10
9秒前
可爱的函函应助敬老院N号采纳,获得10
9秒前
9秒前
香蕉觅云应助小王采纳,获得10
10秒前
完美世界应助liz_采纳,获得10
10秒前
Lucas应助33333采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3582181
求助须知:如何正确求助?哪些是违规求助? 3151685
关于积分的说明 9489107
捐赠科研通 2853879
什么是DOI,文献DOI怎么找? 1568943
邀请新用户注册赠送积分活动 734830
科研通“疑难数据库(出版商)”最低求助积分说明 720864