神经形态工程学
六方氮化硼
材料科学
记忆电阻器
氮化硼
电阻随机存取存储器
光电子学
六方晶系
氮化物
纳米技术
计算机体系结构
计算机科学
电子工程
电气工程
人工神经网络
人工智能
工程类
化学
结晶学
石墨烯
电压
图层(电子)
作者
Jiye Kim,Jaesub Song,Hyunjoung Kwak,Changwon Choi,Kyungmi Noh,Seokho Moon,Hyeonwoong Hwang,Inyong Hwang,Hokyeong Jeong,Si‐Young Choi,Seyoung Kim,Jong Kyu Kim
出处
期刊:Small
[Wiley]
日期:2024-07-01
标识
DOI:10.1002/smll.202403737
摘要
In next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal-organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiO
科研通智能强力驱动
Strongly Powered by AbleSci AI