材料科学
金属有机骨架
纳米技术
化学物理
离子键合
膜
离子
离子运输机
质子化
化学工程
化学
有机化学
吸附
物理化学
生物化学
工程类
作者
Juan A. Allegretto,Gregorio Laucirica,Angel L. Huamani,Michael F. Wagner,Alberto G. Albesa,María Eugenia Toimil‐Molares,Matías Rafti,Waldemar A. Marmisollé,Omar Azzaroni
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-06-28
卷期号:18 (28): 18572-18583
标识
DOI:10.1021/acsnano.4c04435
摘要
Solid-state nanochannels (SSNs) have emerged as promising platforms for controlling ionic transport at the nanoscale. SSNs are highly versatile, and this feature can be enhanced through their combination with porous materials such as Metal-Organic Frameworks (MOF). By selection of specific building blocks and experimental conditions, different MOF architectures can be obtained, and this can influence the ionic transport properties through the nanochannel. Herein, we study the effects of confined synthesis of Zr-based UiO-66 MOF on the ion transport properties of single bullet-shaped poly(ethylene terephthalate) (PET) nanochannels. We have found that emerging textural properties from the MOF phase play a determinant role in controlling ionic transport through the nanochannel. We demonstrate that a transition from ion current saturation regimes to diode-like regimes can be obtained by employing different synthetic approaches, namely, counterdiffusion synthesis, where MOF precursors are kept separate and forced to diffuse through the nanochannel, and one-pot synthesis, where both precursors are placed at both ends of the channel. Also, by considering the dependence of the charge state of the UiO-66 MOF on the protonation degree, pH changes offered a mechanism to tune the iontronic output (and selectivity) among different regimes, including anion-driven rectification, cation-driven rectification, ion current saturation, and ohmic behavior. Furthermore, Poisson-Nernst-Planck (PNP) simulations were employed to rationalize the different iontronic outputs observed experimentally for membranes modified by different methods. Our results demonstrate a straightforward tool to synthesize MOF-based SSN membranes with tunable ion transport regimes.
科研通智能强力驱动
Strongly Powered by AbleSci AI