LAD-Net: A lightweight welding defect surface non-destructive detection algorithm based on the attention mechanism

机制(生物学) 焊接 网(多面体) 算法 曲面(拓扑) 计算机科学 工程制图 工程类 材料科学 机械工程 数学 几何学 物理 量子力学
作者
Feng Liang,Lun Zhao,Yu Ren,Sen Wang,Suet To,Zeshan Abbas,Md Shafiqul Islam
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:161: 104109-104109 被引量:6
标识
DOI:10.1016/j.compind.2024.104109
摘要

Ultrasound welding technology is widely applied in the field of industrial manufacturing. In complex working conditions, various factors such as welding parameters, equipment conditions and operational techniques contribute to the formation of diverse and unpredictable line defects during the welding process. These defects exhibit characteristics such as varied shapes, random positions, and diverse types. Consequently, traditional defect surface detection methods face challenges in achieving efficient and accurate non-destructive testing. To achieve real-time detection of ultrasound welding defects efficiently, we have developed a lightweight network called the Lightweight Attention Detection Network (LAD-Net) based on an attention mechanism. Firstly, this work proposes a Deformable Convolution Feature Extraction Module (DCFE-Module) aimed at addressing the challenge of extracting features from welding defects characterized by variable shapes, random positions, and complex defect types. Additionally, to prevent the loss of critical defect features and enhance the network's capability for feature extraction and integration, this study designs a Lightweight Step Attention Mechanism Module (LSAM-Module) based on the proposed Step Attention Mechanism Convolution (SAM-Conv). Finally, by integrating the Efficient Multi-scale Attention (EMA) module and the Explicit Visual Center (EVC) module into the network, we address the issue of imbalance between global and local information processing, and promote the integration of key defect features. Qualitative and quantitative experimental results conducted on both ultrasound welding defect data and the publicly available NEU-DET dataset demonstrate that the proposed LAD-Net method achieves high performance. On our custom dataset, the F1 score and [email protected] reached 0.954 and 94.2%, respectively. Furthermore, the method exhibits superior detection performance on the public dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
4秒前
4秒前
5秒前
艾小晗完成签到,获得积分10
5秒前
风清扬发布了新的文献求助10
5秒前
6秒前
8秒前
8秒前
9秒前
ZZ发布了新的文献求助10
9秒前
ye发布了新的文献求助10
9秒前
艾小晗发布了新的文献求助10
9秒前
9秒前
xi发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
脑洞疼应助风清扬采纳,获得10
13秒前
13秒前
wanci应助ccq采纳,获得10
13秒前
素简发布了新的文献求助10
13秒前
云行发布了新的文献求助10
14秒前
Owen应助WoxiC采纳,获得10
14秒前
Lucas应助超级的西装采纳,获得10
15秒前
怕黑半仙发布了新的文献求助10
17秒前
msk发布了新的文献求助10
17秒前
17秒前
WHB发布了新的文献求助10
18秒前
小禾一定行完成签到 ,获得积分10
18秒前
Mia完成签到,获得积分20
19秒前
23秒前
跳跃忆灵完成签到,获得积分10
23秒前
Akim应助素简采纳,获得10
25秒前
跳跃忆灵发布了新的文献求助10
27秒前
27秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167