LAD-Net: A lightweight welding defect surface non-destructive detection algorithm based on the attention mechanism

机制(生物学) 焊接 网(多面体) 算法 曲面(拓扑) 计算机科学 工程制图 工程类 材料科学 机械工程 数学 几何学 物理 量子力学
作者
Feng Liang,Lun Zhao,Yu Ren,Sen Wang,Suet To,Zeshan Abbas,Md Shafiqul Islam
出处
期刊:Computers in Industry [Elsevier]
卷期号:161: 104109-104109
标识
DOI:10.1016/j.compind.2024.104109
摘要

Ultrasound welding technology is widely applied in the field of industrial manufacturing. In complex working conditions, various factors such as welding parameters, equipment conditions and operational techniques contribute to the formation of diverse and unpredictable line defects during the welding process. These defects exhibit characteristics such as varied shapes, random positions, and diverse types. Consequently, traditional defect surface detection methods face challenges in achieving efficient and accurate non-destructive testing. To achieve real-time detection of ultrasound welding defects efficiently, we have developed a lightweight network called the Lightweight Attention Detection Network (LAD-Net) based on an attention mechanism. Firstly, this work proposes a Deformable Convolution Feature Extraction Module (DCFE-Module) aimed at addressing the challenge of extracting features from welding defects characterized by variable shapes, random positions, and complex defect types. Additionally, to prevent the loss of critical defect features and enhance the network's capability for feature extraction and integration, this study designs a Lightweight Step Attention Mechanism Module (LSAM-Module) based on the proposed Step Attention Mechanism Convolution (SAM-Conv). Finally, by integrating the Efficient Multi-scale Attention (EMA) module and the Explicit Visual Center (EVC) module into the network, we address the issue of imbalance between global and local information processing, and promote the integration of key defect features. Qualitative and quantitative experimental results conducted on both ultrasound welding defect data and the publicly available NEU-DET dataset demonstrate that the proposed LAD-Net method achieves high performance. On our custom dataset, the F1 score and [email protected] reached 0.954 and 94.2%, respectively. Furthermore, the method exhibits superior detection performance on the public dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小鱼爱吃肉应助研ZZ采纳,获得10
1秒前
GH07355018完成签到,获得积分10
2秒前
surfing发布了新的文献求助10
2秒前
bkagyin应助猪猪爆采纳,获得10
2秒前
天天快乐应助waayu采纳,获得10
3秒前
深情安青应助平淡秋白采纳,获得10
3秒前
Orange应助神华采纳,获得10
4秒前
积极荆完成签到 ,获得积分10
4秒前
科研喵完成签到,获得积分20
5秒前
GH07355018发布了新的文献求助10
5秒前
希望天下0贩的0应助Tiwiiw采纳,获得10
5秒前
GM完成签到,获得积分20
5秒前
fanfan发布了新的文献求助30
5秒前
巴图鲁发布了新的文献求助10
5秒前
36456657应助栗子芸采纳,获得10
6秒前
星辰大海喔完成签到 ,获得积分10
7秒前
kevin完成签到,获得积分10
7秒前
7秒前
赘婿应助liuwei采纳,获得10
8秒前
8秒前
htscn完成签到,获得积分10
8秒前
9秒前
WizBLue发布了新的文献求助100
10秒前
Jasper应助意而往南飞采纳,获得10
10秒前
言帅帅完成签到,获得积分10
10秒前
RebeccaHe应助JM采纳,获得10
11秒前
ee发布了新的文献求助10
11秒前
星辰大海应助maolizi采纳,获得10
11秒前
12秒前
科研通AI2S应助Elian采纳,获得10
12秒前
surfing完成签到,获得积分10
12秒前
12秒前
14秒前
神华完成签到,获得积分10
15秒前
15秒前
迪迦发布了新的文献求助10
15秒前
16秒前
lighting发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286