Deciphering the dynamic structural evolution of oxygen vacancies enriched SrFe12O19 for efficient reverse water gas shift reaction

水煤气变换反应 氧气 析氧 化学 材料科学 化学工程 化学物理 催化作用 工程类 物理化学 有机化学 电极 电化学
作者
Gaje Singh,Jyotishman Kaishyop,Md Jahiruddin Gazi,Vivek Kumar Shrivastaw,Mumtaj Shah,Indrajit Ghosh,Tuhin S. Khan,Ankur Bordoloi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:494: 153205-153205 被引量:1
标识
DOI:10.1016/j.cej.2024.153205
摘要

The Reverse Water-Gas Shift (rWGS) reaction is recognized as a potentially promising pathway to serve the dual purpose, possible shifting of CO2 from a linear economy to a circular and positive economic impact in the current industrial process. This study is engaged to develop a series of oxygen vacancies enriched M−type strontium hexaferrite (SrFe12O19) catalysts via doping of transition metals like Cu, Zn, Co, and Ni for the rWGS reaction. Cu-doped SrFe12O19 exhibited 100 % CO selectivity and a CO production rate of 2850 mmol h−1 gcat-1, at a comparatively lower temperature (500 °C), outpacing the performance of almost all non-precious metal-based catalytic systems. Moreover, the catalyst was active without the requirement of the H2 pre-reduction procedure and displayed remarkable stability tested up to 200 h without any significant deactivation, making it more industrially relevant. The characterization of as-prepared catalysts indicates the enrichment of oxygen vacancies and reducibility after the involvement of the dopant in the SrFe12O19 system. The formation of various iron species (Fe3O4, Fe3C, and Fe5C2) was revealed by the in-situ studies and post-reaction characterizations of the catalyst system, and their relative amounts were significantly affected by the nature of doping elements, which subsequently influenced the CO selectivity. The dynamic structural evolution and surface-adsorbed species were identified using in-situ Raman and DRIFTS studies. Finally, the structure–activity relationship was rationalized through not only several ex-situ/in-situ characterization techniques but also an in-detailed Density functional theory (DFT) study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
max完成签到,获得积分10
1秒前
1秒前
2秒前
香蕉觅云应助huayan采纳,获得10
2秒前
小马甲应助包子采纳,获得10
2秒前
Owen应助元气满满的冰美式采纳,获得10
2秒前
寒武纪完成签到,获得积分10
3秒前
CipherSage应助huco采纳,获得10
3秒前
明亮的映天完成签到,获得积分10
3秒前
充电宝应助Tony12采纳,获得10
3秒前
Uchiha发布了新的文献求助10
4秒前
4秒前
5秒前
打打应助碧蓝的睫毛采纳,获得30
5秒前
酷波er应助天天向上采纳,获得10
6秒前
儿童肉松发布了新的文献求助10
6秒前
7秒前
小瓦片发布了新的文献求助10
8秒前
8秒前
华仔应助布曲采纳,获得10
8秒前
Hello应助高兴的牛排采纳,获得10
8秒前
11秒前
guochang发布了新的文献求助10
11秒前
莹莹啊发布了新的文献求助10
13秒前
Akim应助淡定沛珊采纳,获得10
13秒前
wumeng完成签到,获得积分20
14秒前
风扇没有电完成签到,获得积分10
15秒前
慕青应助GUGU采纳,获得10
15秒前
包子发布了新的文献求助10
15秒前
隐形曼青应助天天向上采纳,获得10
15秒前
Jessica完成签到,获得积分10
15秒前
15秒前
CodeCraft应助东方天奇采纳,获得30
16秒前
今后应助小博士328采纳,获得10
17秒前
18秒前
19秒前
cctv18应助wumeng采纳,获得30
19秒前
豆子应助小雪采纳,获得20
19秒前
ZHN发布了新的文献求助10
19秒前
ssjk发布了新的文献求助30
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076615
求助须知:如何正确求助?哪些是违规求助? 2729583
关于积分的说明 7509104
捐赠科研通 2377778
什么是DOI,文献DOI怎么找? 1260780
科研通“疑难数据库(出版商)”最低求助积分说明 611183
版权声明 597203