生物
秀丽隐杆线虫
长寿
基因
核基因
线粒体DNA
线粒体
基因组
遗传学
隐杆线虫病
黑腹果蝇
作者
Mei Tao,Jiani Chen,Chunlai Cui,Yandong Xu,Jingxiu Xu,Zheyi Shi,Jiaqi Yun,Junwei Zhang,Guo-Zheng Ou,Chao Liu,Yun Chen,Zeng‐Rong Zhu,Ronghui Pan,Suhong Xu,Xue‐Xin Chen,Antonis Rokas,Yang Zhao,Sibao Wang,Jianhua Huang,Xing‐Xing Shen
出处
期刊:Nature Aging
日期:2024-06-04
卷期号:4 (8): 1076-1088
被引量:5
标识
DOI:10.1038/s43587-024-00641-z
摘要
Oxidative phosphorylation, essential for energy metabolism and linked to the regulation of longevity, involves mitochondrial and nuclear genes. The functions of these genes and their evolutionary rate covariation (ERC) have been extensively studied, but little is known about whether other nuclear genes not targeted to mitochondria evolutionarily and functionally interact with mitochondrial genes. Here we systematically examined the ERC of mitochondrial and nuclear benchmarking universal single-copy ortholog (BUSCO) genes from 472 insects, identifying 75 non-mitochondria-targeted nuclear genes. We found that the uncharacterized gene CG11837—a putative ortholog of human DIMT1—regulates insect lifespan, as its knockdown reduces median lifespan in five diverse insect species and Caenorhabditis elegans, whereas its overexpression extends median lifespans in fruit flies and C. elegans and enhances oxidative phosphorylation gene activity. Additionally, DIMT1 overexpression protects human cells from cellular senescence. Together, these data provide insights into the ERC of mito-nuclear genes and suggest that CG11837 may regulate longevity across animals. By analyzing co-evolution of mitochondrial and nuclear genomes across insect species, the authors uncover the evolutionary covariation of a group of non-mitochondrially targeted nuclear genes with mitochondrial genes, including the uncharacterized gene CG11837, which regulates insect lifespan.
科研通智能强力驱动
Strongly Powered by AbleSci AI