Tribological performance study and prediction of copper coated by MoS2 based on GBRT method

摩擦学 往复运动 材料科学 摩擦系数 涂层 复合材料 磨损系数 摩擦系数 冶金 方位(导航) 地图学 地理
作者
Guoqing Wang,Yuling Ruan,Hongxing Wang,Gai Zhao,Xinxin Cao,Xingming Li,Qingjun Ding
出处
期刊:Tribology International [Elsevier]
卷期号:179: 108149-108149 被引量:15
标识
DOI:10.1016/j.triboint.2022.108149
摘要

Fabricating solid lubricating coating on the metal surface had been widely used due to excellent wear resistance. However, its tribological performance became rather complex under different working condition. In this study, we employed machine learning (ML) to predict their tribological properties after experimental investigations and molecular dynamics (MD) simulations. Firstly, copper coated by molybdenum disulfide (MoS2) was prepared with varying thicknesses. Then, their tribological properties were studied under different loads and reciprocating frequencies to explore the wear mechanism from both macroscopic scale and nano scale. Importantly, correlations between friction and wear of coatings with testing parameters were investigated by predicting Coefficient of Friction (COF) and wear rate based on ML algorithm of Gradient Boosting Regression Tree (GBRT). The results showed that the thicker coating exhibited a smaller friction coefficient and more severe wear owing to the low hardness, which was also demonstrated by experiments and MD simulations. The friction coefficient and wear increased with the increase of load, but only the friction coefficient growth with the increase of reciprocating frequency. In addition, the GBRT model can effectively predict the tribological properties of the MoS2 coating on the copper substrate and the prediction accuracy of friction coefficient and wear rate reached 94.6% and 96.3%, respectively. Furthermore, relative importance analysis revealed that load had the greatest effect both on predicting friction coefficient and wear rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li梨完成签到,获得积分10
刚刚
1秒前
晏小敏完成签到,获得积分10
1秒前
爆米花应助风中寄云采纳,获得10
2秒前
屹舟发布了新的文献求助10
2秒前
Dou完成签到,获得积分10
2秒前
白泯完成签到,获得积分10
3秒前
1ssd发布了新的文献求助10
3秒前
667发布了新的文献求助10
3秒前
小二郎应助辰柒采纳,获得10
4秒前
5秒前
5秒前
clear完成签到,获得积分20
5秒前
5秒前
orixero应助congguitar采纳,获得10
5秒前
Evan完成签到,获得积分10
5秒前
YANG发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
6秒前
sunzhiyu233发布了新的文献求助10
7秒前
Raul完成签到 ,获得积分10
7秒前
7秒前
伯尔尼圆白菜完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
buuyoo完成签到,获得积分10
8秒前
科研通AI5应助魏煜佳采纳,获得10
8秒前
LLxiaolong完成签到,获得积分10
8秒前
9秒前
9秒前
巨噬细胞A完成签到,获得积分10
9秒前
9秒前
我要读博士完成签到 ,获得积分10
9秒前
xxq完成签到,获得积分20
9秒前
福气小姐完成签到 ,获得积分10
9秒前
搜集达人应助jjy采纳,获得10
10秒前
10秒前
郑总完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759