Tribological performance study and prediction of copper coated by MoS2 based on GBRT method

摩擦学 往复运动 材料科学 摩擦系数 涂层 复合材料 磨损系数 摩擦系数 冶金 方位(导航) 地图学 地理
作者
Guoqing Wang,Yuling Ruan,Hongxing Wang,Gai Zhao,Xinxin Cao,Xingming Li,Qingjun Ding
出处
期刊:Tribology International [Elsevier]
卷期号:179: 108149-108149 被引量:15
标识
DOI:10.1016/j.triboint.2022.108149
摘要

Fabricating solid lubricating coating on the metal surface had been widely used due to excellent wear resistance. However, its tribological performance became rather complex under different working condition. In this study, we employed machine learning (ML) to predict their tribological properties after experimental investigations and molecular dynamics (MD) simulations. Firstly, copper coated by molybdenum disulfide (MoS2) was prepared with varying thicknesses. Then, their tribological properties were studied under different loads and reciprocating frequencies to explore the wear mechanism from both macroscopic scale and nano scale. Importantly, correlations between friction and wear of coatings with testing parameters were investigated by predicting Coefficient of Friction (COF) and wear rate based on ML algorithm of Gradient Boosting Regression Tree (GBRT). The results showed that the thicker coating exhibited a smaller friction coefficient and more severe wear owing to the low hardness, which was also demonstrated by experiments and MD simulations. The friction coefficient and wear increased with the increase of load, but only the friction coefficient growth with the increase of reciprocating frequency. In addition, the GBRT model can effectively predict the tribological properties of the MoS2 coating on the copper substrate and the prediction accuracy of friction coefficient and wear rate reached 94.6% and 96.3%, respectively. Furthermore, relative importance analysis revealed that load had the greatest effect both on predicting friction coefficient and wear rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三新荞应助伶俐的谷波采纳,获得10
刚刚
简单如天完成签到,获得积分10
1秒前
我觉得很危险完成签到,获得积分10
2秒前
2秒前
BreakingYQ发布了新的文献求助10
2秒前
nanalalal完成签到,获得积分10
3秒前
5秒前
5秒前
Hello应助Damon采纳,获得10
5秒前
领导范儿应助ruanyh采纳,获得10
7秒前
wang5945发布了新的文献求助10
7秒前
11发布了新的文献求助10
8秒前
10秒前
Chasing完成签到 ,获得积分10
10秒前
田様应助gaoww采纳,获得10
11秒前
11秒前
12秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
zzzq应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
HCLonely应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
13秒前
14秒前
14秒前
14秒前
小蘑菇应助大分子采纳,获得10
15秒前
你的小可爱突然出现完成签到,获得积分10
16秒前
#include完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助浅笑成风采纳,获得10
18秒前
輝23发布了新的文献求助10
19秒前
田様应助酷酷碧采纳,获得10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228233
求助须知:如何正确求助?哪些是违规求助? 2876013
关于积分的说明 8193684
捐赠科研通 2543222
什么是DOI,文献DOI怎么找? 1373580
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621316