An improved multi-objective evolutionary algorithm for multiple-target asynchronous parallel selective disassembly sequence planning

再制造 异步通信 计算机科学 帕累托原理 过程(计算) 序列(生物学) 分布式计算 工程类 制造工程 运营管理 计算机网络 生物 遗传学 操作系统
作者
Xiang Sun,Shunsheng Guo,Jun Guo,Baigang Du,Hongtao Tang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:237 (10): 1553-1569 被引量:4
标识
DOI:10.1177/09544054221136512
摘要

The product’s service life has been shortened rapidly along with the development of modern technologies and human esthetic evolutions, resulting in a great number of end-of-life (EOL) products. Disassembling renewable parts from EOL products for remanufacturing is of great significance to save resources and protect the environment. The existing studies on selective disassembly sequence planning (SDSP) largely focus on the sequential disassembly planning, which is inefficient especially for complex products because it is a linear process where only one component can be removed at a time. Thus, this work focuses on parallel SDSP and further proposes a multiple-target asynchronous parallel selective DSP (APSDSP) with the objectives of minimizing disassembly time and maximizing disassembly profit simultaneously. In APSDSP, operators can remove multiple components simultaneously as long as disassembly constraints are not violated, and without synchronization requirement between operators. The feasible disassembly sequence and disassembly direction sequence are generated by a space interference matrix method (SIMM) to meet the actual disassembly environment. Based on SIMM, an improved multi-objective evolutionary algorithm based on multiple neighborhood search strategy is developed to create the pareto frontier of the problem. Finally, two cases study are presented to validate the effectiveness of the proposed methodology. It gives enterprises new insights to reduce disassembly time and improve disassembly profit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ommphey完成签到 ,获得积分10
1秒前
柯云完成签到,获得积分10
1秒前
务实完成签到 ,获得积分10
1秒前
伶俐的千柔完成签到,获得积分10
1秒前
1秒前
Augusterny完成签到 ,获得积分10
2秒前
2秒前
Sherwin完成签到,获得积分10
3秒前
雨晴完成签到,获得积分10
3秒前
梅川秋裤完成签到,获得积分10
3秒前
月亮完成签到,获得积分10
4秒前
wjw完成签到,获得积分10
4秒前
kaisertreue发布了新的文献求助10
4秒前
aaaaaa完成签到,获得积分10
7秒前
yff完成签到,获得积分20
8秒前
8秒前
零相似完成签到,获得积分10
8秒前
苯二氮卓完成签到,获得积分10
9秒前
桑尼号完成签到,获得积分10
9秒前
9秒前
10秒前
端庄洪纲完成签到 ,获得积分10
10秒前
Kevin完成签到,获得积分10
10秒前
酷波er应助aaaaaa采纳,获得10
11秒前
小蘑菇应助苏苏诺诺2023采纳,获得10
11秒前
yff发布了新的文献求助10
14秒前
不辣的完成签到 ,获得积分10
14秒前
寒冷的煜祺完成签到,获得积分10
15秒前
yuhaha完成签到,获得积分10
15秒前
Leohp完成签到,获得积分10
16秒前
沉默的莞完成签到,获得积分10
16秒前
16秒前
透明的世界应助Zo采纳,获得10
19秒前
高山流水完成签到,获得积分10
20秒前
20秒前
稳重的怀梦完成签到,获得积分10
20秒前
pophoo完成签到,获得积分10
20秒前
白鹭立雪完成签到,获得积分10
22秒前
不秃燃的小老弟完成签到 ,获得积分10
22秒前
想人陪的万言完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725519
求助须知:如何正确求助?哪些是违规求助? 3270445
关于积分的说明 9965924
捐赠科研通 2985491
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777792
科研通“疑难数据库(出版商)”最低求助积分说明 747261