Modality-level cross-connection and attentional feature fusion based deep neural network for multi-modal brain tumor segmentation

模态(人机交互) 计算机科学 特征(语言学) 分割 深度学习 人工智能 人工神经网络 特征学习 块(置换群论) 编码器 模式识别(心理学) 计算机视觉 数学 几何学 哲学 语言学 操作系统
作者
Tongxue Zhou
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:81: 104524-104524 被引量:13
标识
DOI:10.1016/j.bspc.2022.104524
摘要

Brain tumor segmentation from Magnetic Resonance Imaging is essential for early diagnosis and treatment planning for brain cancers in clinical practice. However, existing brain tumor segmentation methods cannot sufficiently learn high-quality feature information for segmentation. To address this issue, a modality-level cross-connection and attentional feature fusion based deep neural network is proposed for multi-modal brain tumor segmentation. The proposed method can not only locate the whole tumor region but also can accurately segment the sub-tumor regions. The proposed network architecture is a multi-encoder based 3D U-Net. Inspired by the characteristics of multi-modalities, a modality-level cross-connection (MCC) is first proposed to take advantage of the complementary information between the related modalities. Moreover, to enhance the feature learning capacity of the network, the attentional feature fusion module (AFFM) is proposed to fuse the multi-modalities as well as to extract the useful feature representation for segmentation. It consists of two components: multi-scale spatial feature fusion (MSFF) block and dual-path channel feature fusion (DCFF) block. They aim at learning multi-scale spatial contextual information and the channel-wise feature information to improve the segmentation accuracy. Also, the proposed fusion module can be easily integrated into other fusion models and deep neural network architectures. Comprehensive experiments evaluated on the BraTS 2018 dataset demonstrate that the proposed network architecture can effectively improve the brain tumor segmentation performance when compared with the baseline methods and the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cora完成签到,获得积分20
刚刚
xiaojin完成签到,获得积分20
刚刚
李金奥发布了新的文献求助10
刚刚
勤奋旭尧发布了新的文献求助10
刚刚
1秒前
思源应助追寻思雁采纳,获得10
1秒前
1秒前
领导范儿应助过时的元风采纳,获得10
1秒前
2秒前
俏皮小兔子完成签到,获得积分10
2秒前
李狗蛋完成签到 ,获得积分10
2秒前
YJ888完成签到,获得积分10
3秒前
昏睡的蟠桃应助过丫丫采纳,获得30
3秒前
3秒前
科研通AI5应助wyc采纳,获得10
3秒前
3秒前
ppt发布了新的文献求助10
4秒前
爱学习的小凌完成签到,获得积分10
4秒前
5秒前
5秒前
以父之名完成签到,获得积分10
5秒前
科研通AI2S应助笑面客采纳,获得10
5秒前
明月照我程完成签到,获得积分10
5秒前
么么叽发布了新的文献求助10
6秒前
昏睡的蟠桃应助柚柚袖子采纳,获得30
6秒前
7秒前
7秒前
7秒前
哈哈大笑完成签到,获得积分10
7秒前
bkagyin应助yanzu采纳,获得10
7秒前
bonnie发布了新的文献求助10
7秒前
7秒前
小碗面完成签到,获得积分20
8秒前
8秒前
8秒前
蒙蒙发布了新的文献求助10
8秒前
8秒前
Ya发布了新的文献求助10
9秒前
9秒前
Chirstina发布了新的文献求助10
9秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725921
求助须知:如何正确求助?哪些是违规求助? 3271014
关于积分的说明 9969976
捐赠科研通 2986468
什么是DOI,文献DOI怎么找? 1638241
邀请新用户注册赠送积分活动 778036
科研通“疑难数据库(出版商)”最低求助积分说明 747383