Opto-thermal deformation fitting method based on a neural network and a transfer learning

泽尼克多项式 人工神经网络 均方误差 计算机科学 卷积神经网络 光学 均方根 算法 人工智能 数学 物理 波前 统计 量子力学
作者
Yue Pan,Motong Hu,Kailin Zhang,Xiping Xu
出处
期刊:Optics Letters [The Optical Society]
卷期号:48 (22): 5851-5851
标识
DOI:10.1364/ol.505605
摘要

The thermal deformation fitting result of an optical surface is an important factor that affects the reliability of optical-mechanical-thermal integrated analysis. The traditional numerical methods are challenging to balance fitting accuracy and efficiency, especially the insufficient ability to deal with high-order Zernike polynomials. In this Letter, we innovatively proposed an opto-thermal deformation fitting method based on a neural network and a transfer learning to overcome shortcomings of numerical methods. The one-dimensional convolutional neural network (1D-CNN) model, which can represent deformation of the optical surface, is trained with Zernike polynomials as the input and the optical surface sag change as the output, and the corresponding Zernike coefficients are predicted by the identity matrix. Meanwhile, the trained 1D-CNN is further combined with the transfer learning to efficiently fit all thermal deformations of the same optical surface at different temperature conditions and avoids repeated training of the network. We performed thermal analysis on the main mirror of an aerial camera to verify the proposed method. The regression analysis of 1D-CNN training results showed that the determination coefficient is greater than 99.9%. The distributions of Zernike coefficients predicted by 1D-CNN and transfer learning are consistent. We conducted an error analysis on the fitting results, and the average values of the peak-valley, root mean square, and mean relative errors of the proposed method are 51.56%, 60.51, and 45.14% of the least square method, respectively. The results indicate that the proposed method significantly improves the fitting accuracy and efficiency of thermal deformations, making the optical-mechanical-thermal integrated analysis more reliable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lf-leo完成签到,获得积分10
1秒前
江璃完成签到,获得积分10
1秒前
ming完成签到,获得积分10
1秒前
坛子完成签到,获得积分10
2秒前
3秒前
发仔发布了新的文献求助10
3秒前
老神在在完成签到,获得积分10
3秒前
糊糊完成签到 ,获得积分10
4秒前
鹿雅彤完成签到,获得积分10
5秒前
yagami完成签到,获得积分10
6秒前
7秒前
9秒前
无解发布了新的文献求助30
9秒前
9秒前
9秒前
Hellolyj完成签到 ,获得积分10
9秒前
开放的沧海完成签到,获得积分10
10秒前
冷静雅香完成签到 ,获得积分10
10秒前
活泼一斩关注了科研通微信公众号
10秒前
asd00发布了新的文献求助10
12秒前
12秒前
xiao应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
努力努力123完成签到,获得积分10
15秒前
橙木木发布了新的文献求助10
16秒前
likenoodles完成签到 ,获得积分10
18秒前
22秒前
Billy发布了新的文献求助200
23秒前
23秒前
鹿雅彤发布了新的文献求助10
23秒前
jixuchance完成签到,获得积分10
25秒前
26秒前
LGH发布了新的文献求助200
26秒前
罗亚亚发布了新的文献求助10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578