Fault Diagnosis of Rolling Bearings in Primary Mine Fans under Sample Imbalance Conditions

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 样品(材料) 特征(语言学) 图像(数学) 相似性(几何) 信号(编程语言) 煤矿开采 工程类 地质学 哲学 地震学 化学 程序设计语言 废物管理 色谱法 语言学
作者
Wei Cui,Jun Ding,Guoying Meng,Zhengyan Lv,Yunlu Feng,Aiming Wang,Xingwei Wan
出处
期刊:Entropy [MDPI AG]
卷期号:25 (8): 1233-1233 被引量:3
标识
DOI:10.3390/e25081233
摘要

Rolling bearings are crucial parts of primary mine fans. In order to guarantee the safety of coal mine production, primary mine fans commonly work during regular operation and are immediately shut down for repair in case of failure. This causes the sample imbalance phenomenon in fault diagnosis (FD), i.e., there are many more normal state samples than faulty ones, seriously affecting the precision of FD. Therefore, the current study presents an FD approach for the rolling bearings of primary mine fans under sample imbalance conditions via symmetrized dot pattern (SDP) images, denoising diffusion probabilistic models (DDPMs), the image generation method, and a convolutional neural network (CNN). First, the 1D bearing vibration signal was transformed into an SDP image with significant characteristics, and the DDPM was employed to create a generated image with similar feature distributions to the real fault image of the minority class. Then, the generated images were supplemented into the imbalanced dataset for data augmentation to balance the minority class samples with the majority ones. Finally, a CNN was utilized as a fault diagnosis model to identify and detect the rolling bearings’ operating conditions. In order to assess the efficiency of the presented method, experiments were performed using the regular rolling bearing dataset and primary mine fan rolling bearing data under actual operating situations. The experimental results indicate that the presented method can more efficiently fit the real image samples’ feature distribution and generate image samples with higher similarity than other commonly used methods. Moreover, the diagnostic precision of the FD model can be effectively enhanced by gradually expanding and enhancing the unbalanced dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6.1应助搞怪世界采纳,获得10
1秒前
他二舅flying完成签到,获得积分10
1秒前
顾矜应助凤梨爱好者采纳,获得10
1秒前
王舒文发布了新的文献求助10
2秒前
2秒前
云止发布了新的文献求助10
2秒前
wudi17发布了新的文献求助10
2秒前
健忘捕发布了新的文献求助10
2秒前
wangjw发布了新的文献求助10
2秒前
大土豆子完成签到,获得积分10
3秒前
zlm发布了新的文献求助10
6秒前
123456完成签到,获得积分10
6秒前
kabayi完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
ououou发布了新的文献求助10
7秒前
7秒前
Bowen发布了新的文献求助10
7秒前
落日游云完成签到,获得积分10
8秒前
是一心一艺就好关注了科研通微信公众号
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
是晓宇啊应助科研通管家采纳,获得10
8秒前
Verity应助科研通管家采纳,获得20
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
是一心一艺就好关注了科研通微信公众号
9秒前
yufanhui应助科研通管家采纳,获得10
9秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
清秋完成签到 ,获得积分10
10秒前
smottom应助科研通管家采纳,获得10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
务实小鸽子完成签到 ,获得积分10
10秒前
思源应助科研通管家采纳,获得10
10秒前
yufanhui应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995