Fault Diagnosis of Rolling Bearings in Primary Mine Fans under Sample Imbalance Conditions

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 样品(材料) 特征(语言学) 图像(数学) 相似性(几何) 信号(编程语言) 煤矿开采 工程类 地质学 语言学 化学 哲学 色谱法 地震学 废物管理 程序设计语言
作者
Wei Cui,Jun Ding,Guoying Meng,Zhengyan Lv,Yunlu Feng,Aiming Wang,Xingwei Wan
出处
期刊:Entropy [MDPI AG]
卷期号:25 (8): 1233-1233 被引量:3
标识
DOI:10.3390/e25081233
摘要

Rolling bearings are crucial parts of primary mine fans. In order to guarantee the safety of coal mine production, primary mine fans commonly work during regular operation and are immediately shut down for repair in case of failure. This causes the sample imbalance phenomenon in fault diagnosis (FD), i.e., there are many more normal state samples than faulty ones, seriously affecting the precision of FD. Therefore, the current study presents an FD approach for the rolling bearings of primary mine fans under sample imbalance conditions via symmetrized dot pattern (SDP) images, denoising diffusion probabilistic models (DDPMs), the image generation method, and a convolutional neural network (CNN). First, the 1D bearing vibration signal was transformed into an SDP image with significant characteristics, and the DDPM was employed to create a generated image with similar feature distributions to the real fault image of the minority class. Then, the generated images were supplemented into the imbalanced dataset for data augmentation to balance the minority class samples with the majority ones. Finally, a CNN was utilized as a fault diagnosis model to identify and detect the rolling bearings’ operating conditions. In order to assess the efficiency of the presented method, experiments were performed using the regular rolling bearing dataset and primary mine fan rolling bearing data under actual operating situations. The experimental results indicate that the presented method can more efficiently fit the real image samples’ feature distribution and generate image samples with higher similarity than other commonly used methods. Moreover, the diagnostic precision of the FD model can be effectively enhanced by gradually expanding and enhancing the unbalanced dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Medicine完成签到,获得积分10
刚刚
微笑书白完成签到,获得积分10
刚刚
标701010发布了新的文献求助30
1秒前
sunzhuxi发布了新的文献求助10
2秒前
wk发布了新的文献求助10
2秒前
在水一方应助Zz采纳,获得10
3秒前
稳重元菱发布了新的文献求助10
5秒前
orixero应助微笑书白采纳,获得10
8秒前
畅快的香菱完成签到,获得积分10
8秒前
9秒前
王九八发布了新的文献求助30
10秒前
郝姝姝完成签到,获得积分10
13秒前
悲凉的冬天完成签到 ,获得积分10
13秒前
go发布了新的文献求助10
13秒前
喵喵发布了新的文献求助10
14秒前
14秒前
14秒前
万能图书馆应助jiujieweizi采纳,获得10
15秒前
KOKPA完成签到 ,获得积分10
15秒前
15秒前
17秒前
17秒前
alili完成签到,获得积分10
18秒前
19秒前
领导范儿应助JIULI采纳,获得10
20秒前
阔达一刀发布了新的文献求助10
20秒前
andrele发布了新的文献求助10
20秒前
22秒前
酷炫笑翠完成签到,获得积分20
22秒前
芸珂驳回了cdy应助
24秒前
24秒前
我是老大应助ZeJ采纳,获得10
24秒前
little2000完成签到 ,获得积分10
24秒前
ssy完成签到 ,获得积分10
25秒前
alili发布了新的文献求助10
25秒前
酷炫笑翠发布了新的文献求助10
26秒前
27秒前
酷波er应助gao采纳,获得30
28秒前
标701010完成签到,获得积分10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260879
求助须知:如何正确求助?哪些是违规求助? 2901937
关于积分的说明 8318293
捐赠科研通 2571697
什么是DOI,文献DOI怎么找? 1397202
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632213