Fault Diagnosis of Rolling Bearings in Primary Mine Fans under Sample Imbalance Conditions

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 样品(材料) 特征(语言学) 图像(数学) 相似性(几何) 信号(编程语言) 煤矿开采 工程类 地质学 语言学 化学 哲学 色谱法 地震学 废物管理 程序设计语言
作者
Wei Cui,Jun Ding,Guoying Meng,Zhengyan Lv,Yunlu Feng,Aiming Wang,Xingwei Wan
出处
期刊:Entropy [MDPI AG]
卷期号:25 (8): 1233-1233 被引量:3
标识
DOI:10.3390/e25081233
摘要

Rolling bearings are crucial parts of primary mine fans. In order to guarantee the safety of coal mine production, primary mine fans commonly work during regular operation and are immediately shut down for repair in case of failure. This causes the sample imbalance phenomenon in fault diagnosis (FD), i.e., there are many more normal state samples than faulty ones, seriously affecting the precision of FD. Therefore, the current study presents an FD approach for the rolling bearings of primary mine fans under sample imbalance conditions via symmetrized dot pattern (SDP) images, denoising diffusion probabilistic models (DDPMs), the image generation method, and a convolutional neural network (CNN). First, the 1D bearing vibration signal was transformed into an SDP image with significant characteristics, and the DDPM was employed to create a generated image with similar feature distributions to the real fault image of the minority class. Then, the generated images were supplemented into the imbalanced dataset for data augmentation to balance the minority class samples with the majority ones. Finally, a CNN was utilized as a fault diagnosis model to identify and detect the rolling bearings’ operating conditions. In order to assess the efficiency of the presented method, experiments were performed using the regular rolling bearing dataset and primary mine fan rolling bearing data under actual operating situations. The experimental results indicate that the presented method can more efficiently fit the real image samples’ feature distribution and generate image samples with higher similarity than other commonly used methods. Moreover, the diagnostic precision of the FD model can be effectively enhanced by gradually expanding and enhancing the unbalanced dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chao完成签到,获得积分10
2秒前
科研通AI6应助JY采纳,获得10
2秒前
笑看小旭旭完成签到,获得积分20
5秒前
幽默书瑶完成签到 ,获得积分10
5秒前
5秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
5秒前
852应助78888采纳,获得10
5秒前
星期天发布了新的文献求助10
5秒前
桐桐应助张瑜采纳,获得10
6秒前
邓茗予完成签到,获得积分20
6秒前
水雾发布了新的文献求助10
6秒前
Lucas应助禹宛白采纳,获得10
7秒前
7秒前
吴先生完成签到,获得积分10
8秒前
8秒前
jin_0124发布了新的文献求助10
8秒前
9秒前
冯雅婷完成签到 ,获得积分10
9秒前
10秒前
10秒前
欣喜谷槐完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
小白鼠完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
科研通AI6应助Fortune采纳,获得10
12秒前
DrLee发布了新的文献求助10
13秒前
搞怪半烟完成签到,获得积分10
13秒前
害怕的惜文完成签到,获得积分10
13秒前
wlnhyF完成签到,获得积分10
13秒前
14秒前
mhpvv完成签到,获得积分10
14秒前
14秒前
东新发布了新的文献求助10
14秒前
王帅发布了新的文献求助10
14秒前
SciGPT应助YZQ采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802