Fault Diagnosis of Rolling Bearings in Primary Mine Fans under Sample Imbalance Conditions

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 样品(材料) 特征(语言学) 图像(数学) 相似性(几何) 信号(编程语言) 煤矿开采 工程类 地质学 语言学 化学 哲学 色谱法 地震学 废物管理 程序设计语言
作者
Wei Cui,Jun Ding,Guoying Meng,Zhengyan Lv,Yunlu Feng,Aiming Wang,Xingwei Wan
出处
期刊:Entropy [MDPI AG]
卷期号:25 (8): 1233-1233 被引量:3
标识
DOI:10.3390/e25081233
摘要

Rolling bearings are crucial parts of primary mine fans. In order to guarantee the safety of coal mine production, primary mine fans commonly work during regular operation and are immediately shut down for repair in case of failure. This causes the sample imbalance phenomenon in fault diagnosis (FD), i.e., there are many more normal state samples than faulty ones, seriously affecting the precision of FD. Therefore, the current study presents an FD approach for the rolling bearings of primary mine fans under sample imbalance conditions via symmetrized dot pattern (SDP) images, denoising diffusion probabilistic models (DDPMs), the image generation method, and a convolutional neural network (CNN). First, the 1D bearing vibration signal was transformed into an SDP image with significant characteristics, and the DDPM was employed to create a generated image with similar feature distributions to the real fault image of the minority class. Then, the generated images were supplemented into the imbalanced dataset for data augmentation to balance the minority class samples with the majority ones. Finally, a CNN was utilized as a fault diagnosis model to identify and detect the rolling bearings’ operating conditions. In order to assess the efficiency of the presented method, experiments were performed using the regular rolling bearing dataset and primary mine fan rolling bearing data under actual operating situations. The experimental results indicate that the presented method can more efficiently fit the real image samples’ feature distribution and generate image samples with higher similarity than other commonly used methods. Moreover, the diagnostic precision of the FD model can be effectively enhanced by gradually expanding and enhancing the unbalanced dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
任性蘑菇完成签到,获得积分10
3秒前
猪猪hero发布了新的文献求助10
4秒前
Estella完成签到,获得积分10
4秒前
小冯爱吃屁完成签到,获得积分10
4秒前
5秒前
周一完成签到 ,获得积分10
7秒前
FashionBoy应助李卓航采纳,获得10
8秒前
8秒前
12秒前
12秒前
天天快乐应助严天飞采纳,获得10
13秒前
13秒前
baqiuzunzhe发布了新的文献求助10
14秒前
孝顺的觅风完成签到 ,获得积分10
14秒前
15秒前
Cyuan发布了新的文献求助10
15秒前
JRZ完成签到,获得积分10
16秒前
16秒前
不想晚睡完成签到,获得积分10
16秒前
17秒前
Sylvia发布了新的文献求助50
17秒前
Lia_Yee完成签到,获得积分10
17秒前
18秒前
asdfqwer发布了新的文献求助10
18秒前
可爱的稚晴完成签到,获得积分20
18秒前
进击的PhD完成签到,获得积分10
19秒前
20秒前
单纯无声完成签到 ,获得积分10
20秒前
22秒前
西西弗斯完成签到,获得积分10
24秒前
李卓航发布了新的文献求助10
26秒前
领导范儿应助甜野采纳,获得10
26秒前
26秒前
28秒前
30秒前
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716