Fault Diagnosis of Rolling Bearings in Primary Mine Fans under Sample Imbalance Conditions

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 样品(材料) 特征(语言学) 图像(数学) 相似性(几何) 信号(编程语言) 煤矿开采 工程类 地质学 语言学 化学 哲学 色谱法 地震学 废物管理 程序设计语言
作者
Wei Cui,Jun Ding,Guoying Meng,Zhengyan Lv,Yunlu Feng,Aiming Wang,Xingwei Wan
出处
期刊:Entropy [MDPI AG]
卷期号:25 (8): 1233-1233 被引量:3
标识
DOI:10.3390/e25081233
摘要

Rolling bearings are crucial parts of primary mine fans. In order to guarantee the safety of coal mine production, primary mine fans commonly work during regular operation and are immediately shut down for repair in case of failure. This causes the sample imbalance phenomenon in fault diagnosis (FD), i.e., there are many more normal state samples than faulty ones, seriously affecting the precision of FD. Therefore, the current study presents an FD approach for the rolling bearings of primary mine fans under sample imbalance conditions via symmetrized dot pattern (SDP) images, denoising diffusion probabilistic models (DDPMs), the image generation method, and a convolutional neural network (CNN). First, the 1D bearing vibration signal was transformed into an SDP image with significant characteristics, and the DDPM was employed to create a generated image with similar feature distributions to the real fault image of the minority class. Then, the generated images were supplemented into the imbalanced dataset for data augmentation to balance the minority class samples with the majority ones. Finally, a CNN was utilized as a fault diagnosis model to identify and detect the rolling bearings’ operating conditions. In order to assess the efficiency of the presented method, experiments were performed using the regular rolling bearing dataset and primary mine fan rolling bearing data under actual operating situations. The experimental results indicate that the presented method can more efficiently fit the real image samples’ feature distribution and generate image samples with higher similarity than other commonly used methods. Moreover, the diagnostic precision of the FD model can be effectively enhanced by gradually expanding and enhancing the unbalanced dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
alho完成签到 ,获得积分10
3秒前
杨硕士完成签到,获得积分10
3秒前
阔达语儿完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
xcchh发布了新的文献求助10
6秒前
单薄虔发布了新的文献求助10
6秒前
共享精神应助yim采纳,获得10
10秒前
勇胜发布了新的文献求助10
10秒前
11秒前
不喜欢孜然完成签到,获得积分10
14秒前
bkagyin应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
斯文败类应助tang采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
15秒前
Lucas应助正直的怜容采纳,获得10
16秒前
啦啦啦发布了新的文献求助20
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
ying发布了新的文献求助10
18秒前
酷波er应助111采纳,获得10
19秒前
together完成签到,获得积分10
22秒前
无花果应助刻苦初兰采纳,获得10
22秒前
23秒前
wq发布了新的文献求助10
23秒前
26秒前
方块儿完成签到 ,获得积分10
26秒前
26秒前
赘婿应助勇胜采纳,获得10
28秒前
刻苦初兰完成签到,获得积分10
29秒前
cJLin发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572037
求助须知:如何正确求助?哪些是违规求助? 4657138
关于积分的说明 14719690
捐赠科研通 4598044
什么是DOI,文献DOI怎么找? 2523550
邀请新用户注册赠送积分活动 1494303
关于科研通互助平台的介绍 1464404