Fault Diagnosis of Rolling Bearings in Primary Mine Fans under Sample Imbalance Conditions

方位(导航) 断层(地质) 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 样品(材料) 特征(语言学) 图像(数学) 相似性(几何) 信号(编程语言) 煤矿开采 工程类 地质学 语言学 化学 哲学 色谱法 地震学 废物管理 程序设计语言
作者
Wei Cui,Jun Ding,Guoying Meng,Zhengyan Lv,Yunlu Feng,Aiming Wang,Xingwei Wan
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:25 (8): 1233-1233 被引量:3
标识
DOI:10.3390/e25081233
摘要

Rolling bearings are crucial parts of primary mine fans. In order to guarantee the safety of coal mine production, primary mine fans commonly work during regular operation and are immediately shut down for repair in case of failure. This causes the sample imbalance phenomenon in fault diagnosis (FD), i.e., there are many more normal state samples than faulty ones, seriously affecting the precision of FD. Therefore, the current study presents an FD approach for the rolling bearings of primary mine fans under sample imbalance conditions via symmetrized dot pattern (SDP) images, denoising diffusion probabilistic models (DDPMs), the image generation method, and a convolutional neural network (CNN). First, the 1D bearing vibration signal was transformed into an SDP image with significant characteristics, and the DDPM was employed to create a generated image with similar feature distributions to the real fault image of the minority class. Then, the generated images were supplemented into the imbalanced dataset for data augmentation to balance the minority class samples with the majority ones. Finally, a CNN was utilized as a fault diagnosis model to identify and detect the rolling bearings’ operating conditions. In order to assess the efficiency of the presented method, experiments were performed using the regular rolling bearing dataset and primary mine fan rolling bearing data under actual operating situations. The experimental results indicate that the presented method can more efficiently fit the real image samples’ feature distribution and generate image samples with higher similarity than other commonly used methods. Moreover, the diagnostic precision of the FD model can be effectively enhanced by gradually expanding and enhancing the unbalanced dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酸菜炖粉条完成签到,获得积分10
2秒前
orixero应助FF采纳,获得10
2秒前
2秒前
微笑的千山完成签到 ,获得积分10
3秒前
3秒前
科研巨头发布了新的文献求助10
3秒前
4秒前
5秒前
Hello应助张琳琳采纳,获得10
6秒前
vialavilda发布了新的文献求助10
6秒前
小新发布了新的文献求助10
7秒前
充电宝应助111采纳,获得10
8秒前
8秒前
希望天下0贩的0应助all采纳,获得10
9秒前
CodeCraft应助Jiayana采纳,获得30
9秒前
9秒前
坚强南烟发布了新的文献求助10
10秒前
SciGPT应助疯狂的凡柔采纳,获得10
11秒前
沉默小虾米完成签到 ,获得积分10
13秒前
灵巧母鸡完成签到,获得积分20
15秒前
15秒前
15秒前
17秒前
rena关注了科研通微信公众号
17秒前
小姜完成签到 ,获得积分10
18秒前
l玖应助小行星碰碰车采纳,获得10
18秒前
科目三应助vialavilda采纳,获得10
19秒前
Laura567发布了新的文献求助10
20秒前
20秒前
22秒前
22秒前
豆沙包子发布了新的文献求助10
23秒前
23秒前
keeno完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958009
求助须知:如何正确求助?哪些是违规求助? 3504129
关于积分的说明 11117204
捐赠科研通 3235512
什么是DOI,文献DOI怎么找? 1788281
邀请新用户注册赠送积分活动 871191
科研通“疑难数据库(出版商)”最低求助积分说明 802485