亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-Cloud: A Deep Neural Network-Based Approach for Analyzing Differentially Expressed Genes of RNA-seq Data

深度学习 云计算 卷积神经网络 计算机科学 RNA序列 人工智能 领域(数学) 人工神经网络 数据挖掘 计算生物学 核糖核酸 基因 机器学习 基因表达 生物 遗传学 数学 转录组 纯数学 操作系统
作者
Ying Zhou,Ting Qi,Min Pan,Jing Tu,Xiangwei Zhao,Qinyu Ge,Zuhong Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2302-2310 被引量:3
标识
DOI:10.1021/acs.jcim.3c00766
摘要

Presently, the field of analyzing differentially expressed genes (DEGs) of RNA-seq data is still in its infancy, with new approaches constantly being proposed. Taking advantage of deep neural networks to explore gene expression information on RNA-seq data can provide a novel possibility in the biomedical field. In this study, a novel approach based on a deep learning algorithm and cloud model was developed, named Deep-Cloud. Its main advantage is not only using a convolutional neural network and long short-term memory to extract original data features and estimate gene expression of RNA-seq data but also combining the statistical method of the cloud model to quantify the uncertainty and carry out in-depth analysis of the DEGs between the disease groups and the control groups. Compared with traditional analysis software of DEGs, the Deep-cloud model further improves the sensitivity and accuracy of obtaining DEGs from RNA-seq data. Overall, the proposed new approach Deep-cloud paves a new pathway for mining RNA-seq data in the biomedical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wei发布了新的文献求助10
14秒前
58秒前
七七发布了新的文献求助10
1分钟前
科研通AI2S应助冷静新烟采纳,获得10
1分钟前
慕青应助韓導采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ariaooo发布了新的文献求助50
2分钟前
韓導发布了新的文献求助10
2分钟前
ariaooo完成签到,获得积分10
2分钟前
科研通AI2S应助冷静新烟采纳,获得10
3分钟前
韓導完成签到,获得积分10
3分钟前
3分钟前
358489228完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
米奇妙妙屋完成签到,获得积分10
3分钟前
充电宝应助sumini采纳,获得30
3分钟前
4分钟前
灯光师完成签到,获得积分10
4分钟前
rose完成签到,获得积分10
4分钟前
天天快乐应助Emiya采纳,获得10
4分钟前
4分钟前
dovejingling完成签到,获得积分10
4分钟前
djh发布了新的文献求助10
4分钟前
4分钟前
iris发布了新的文献求助10
4分钟前
上官若男应助帅气的安柏采纳,获得10
4分钟前
4分钟前
我是老大应助iris采纳,获得10
4分钟前
FashionBoy应助djh采纳,获得10
4分钟前
白云发布了新的文献求助10
4分钟前
yukky完成签到,获得积分10
4分钟前
GPTea完成签到,获得积分0
4分钟前
4分钟前
大个应助yukky采纳,获得30
4分钟前
sumini发布了新的文献求助30
4分钟前
5分钟前
碧蓝恶天完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926521
求助须知:如何正确求助?哪些是违规求助? 4196268
关于积分的说明 13032297
捐赠科研通 3968426
什么是DOI,文献DOI怎么找? 2174970
邀请新用户注册赠送积分活动 1192161
关于科研通互助平台的介绍 1102388