Performance evaluation of deep learning models for the classification and identification of dental implants

人工智能 放大倍数 计算机科学 生成对抗网络 深度学习 对象(语法) 植入 模式识别(心理学) 计算机视觉 医学 外科
作者
Hyun-Jun Kong,Jin-Yong Yoo,Jun-Hyeok Lee,Sang-Ho Eom,Ji-Hyun Kim
出处
期刊:Journal of Prosthetic Dentistry [Elsevier BV]
被引量:12
标识
DOI:10.1016/j.prosdent.2023.07.009
摘要

Statement of problem Dental implant systems can be identified using image classification deep learning. However, investigations on the accuracy of classifying and identifying implant design through an object detection model are lacking. Purpose The purpose of this study was to evaluate the performance of an object detection deep learning model for classifying the implant designs of 103 types of implants. Material and methods From panoramic radiographs, 14 037 implant images were extracted. Implant designs were subdivided into 10 classes in the coronal, 13 in the middle, and 10 in the apical third. Classes with fewer than 50 images were excluded from the training dataset. Among the images, 80% were used as training data, and the remaining 20% as test data; the data were generated 3 times for 3-fold cross-validation (implant datasets 1, 2, and 3). Versions 5 and 7 of you only look once (YOLO) algorithm were used to train the model, and the mean average precision (mAP) was evaluated. Subsequently, data augmentation was performed using image processing and a real-enhanced super-resolution generative adversarial network, and the accuracy was re-evaluated using YOLOv7. Results The mAP of YOLOv7 in the 3 datasets was 0.931, 0.984, and 0.884, respectively, which were higher than the mAP of YOLOv5. After image processing in implant dataset-1, the mAP improved to 0.986 and, with the real-enhanced super-resolution generative adversarial network, to 0.988 and 0.986 at magnification ×2 and ×4, respectively. Conclusions The object detection model for classifying implant designs found a high accuracy for 26 classes. The mAP of the model differed depending on the type of algorithm, image processing process, and detailed implant design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuhongxiang完成签到,获得积分10
刚刚
刚刚
科研通AI5应助大可采纳,获得10
刚刚
程旭发布了新的文献求助10
刚刚
科研通AI5应助DDB采纳,获得10
1秒前
Keming完成签到,获得积分10
1秒前
不合格的科研er完成签到,获得积分10
1秒前
木木发布了新的文献求助10
1秒前
lesyeuxdexx完成签到 ,获得积分10
2秒前
YY完成签到,获得积分10
3秒前
大个应助济民财采纳,获得10
4秒前
大梦想家发布了新的文献求助10
4秒前
阳光冷松发布了新的文献求助10
4秒前
丘比特应助owlhealth采纳,获得10
4秒前
Cat应助呜啦啦啦采纳,获得10
6秒前
7秒前
8秒前
希望天下0贩的0应助Lucas采纳,获得30
8秒前
深情安青应助Rsoup采纳,获得10
9秒前
大个应助木木采纳,获得10
9秒前
领导范儿应助Yacon采纳,获得30
9秒前
发粪涂墙完成签到,获得积分10
10秒前
10秒前
易水完成签到 ,获得积分10
11秒前
12秒前
seven发布了新的文献求助10
12秒前
白白圣诞发布了新的文献求助10
13秒前
puhui完成签到,获得积分10
13秒前
ginny完成签到,获得积分10
13秒前
13秒前
14秒前
哈赤完成签到 ,获得积分10
15秒前
15秒前
完美世界应助kmzzy采纳,获得30
16秒前
白开水完成签到,获得积分10
16秒前
16秒前
桐桐应助dk0dk0dk0采纳,获得10
16秒前
yoke完成签到,获得积分10
16秒前
jijijibibibi发布了新的文献求助10
17秒前
KK发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627