Hybrid Network Using Dynamic Graph Convolution and Temporal Self-Attention for EEG-Based Emotion Recognition

计算机科学 脑电图 人工智能 模式识别(心理学) 图形 背景(考古学) 卷积(计算机科学) 人工神经网络 理论计算机科学 心理学 生物 精神科 古生物学
作者
Cheng Cheng,Zikang Yu,Yong Zhang,Lin Feng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:13
标识
DOI:10.1109/tnnls.2023.3319315
摘要

The electroencephalogram (EEG) signal has become a highly effective decoding target for emotion recognition and has garnered significant attention from researchers. Its spatial topological and time-dependent characteristics make it crucial to explore both spatial information and temporal information for accurate emotion recognition. However, existing studies often focus on either spatial or temporal aspects of EEG signals, neglecting the joint consideration of both perspectives. To this end, this article proposes a hybrid network consisting of a dynamic graph convolution (DGC) module and temporal self-attention representation (TSAR) module, which concurrently incorporates the representative knowledge of spatial topology and temporal context into the EEG emotion recognition task. Specifically, the DGC module is designed to capture the spatial functional relationships within the brain by dynamically updating the adjacency matrix during the model training process. Simultaneously, the TSAR module is introduced to emphasize more valuable time segments and extract global temporal features from EEG signals. To fully exploit the interactivity between spatial and temporal information, the hierarchical cross-attention fusion (H-CAF) module is incorporated to fuse the complementary information from spatial and temporal features. Extensive experimental results on the DEAP, SEED, and SEED-IV datasets demonstrate that the proposed method outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Juvenilesy采纳,获得50
1秒前
田様应助禾斗石开采纳,获得20
4秒前
6秒前
7秒前
9秒前
9秒前
nizi完成签到,获得积分10
10秒前
11秒前
SIHUONIANHUA发布了新的文献求助10
11秒前
orixero应助调皮的海之采纳,获得10
14秒前
李健的小迷弟应助nizi采纳,获得10
15秒前
从容发布了新的文献求助10
16秒前
脑洞疼应助123采纳,获得10
16秒前
完美世界应助仲侣弥月采纳,获得10
18秒前
18秒前
我是老大应助SIHUONIANHUA采纳,获得10
20秒前
小鱼冻干完成签到,获得积分10
20秒前
踏实无敌应助LIO采纳,获得40
22秒前
23秒前
山人出窍发布了新的文献求助10
25秒前
SIHUONIANHUA完成签到,获得积分20
26秒前
123发布了新的文献求助10
28秒前
31秒前
MXene应助共产主义接班人采纳,获得20
32秒前
33秒前
山人出窍完成签到,获得积分20
33秒前
34秒前
nizi发布了新的文献求助10
35秒前
仲侣弥月发布了新的文献求助10
36秒前
37秒前
38秒前
38秒前
planto发布了新的文献求助10
41秒前
溪年完成签到,获得积分10
41秒前
helong1208发布了新的文献求助10
43秒前
45秒前
科研通AI5应助啦啦啦采纳,获得10
47秒前
cc应助zhu采纳,获得20
48秒前
SSL发布了新的文献求助10
50秒前
50秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735955
求助须知:如何正确求助?哪些是违规求助? 3279643
关于积分的说明 10016719
捐赠科研通 2996337
什么是DOI,文献DOI怎么找? 1644024
邀请新用户注册赠送积分活动 781751
科研通“疑难数据库(出版商)”最低求助积分说明 749425