Current Status and Advancement of Nanomaterials within Polymeric Membranes for Water Purification

纳米材料 纳米技术 材料科学 饮用水净化 吸附 表面改性 静电纺丝 纳米纤维 水处理 纳米复合材料 石墨烯 化学工程 化学 聚合物 环境科学 环境工程 复合材料 工程类 有机化学 生物化学
作者
Naumih M. Noah
出处
期刊:ACS applied nano materials [American Chemical Society]
被引量:3
标识
DOI:10.1021/acsanm.3c04110
摘要

The contamination of water resources is a significant environmental challenge. The creation of innovative technologies to address this challenge is of paramount significance. Nanomaterials within polymeric membranes have surfaced as a hopeful technology within the realm of water purification, offering solutions to crucial issues concerning the elimination of pollutants and pathogens from water supplies. The exceptional properties of nanomaterials within polymeric membranes, including their high surface area, tunable pore sizes, and selective permeability, have enabled significant progress in the effective removal of various contaminants from water. This is due to the integration of nanoscale materials, such as metal nanoparticles, nanofibers, graphene, and graphene oxide, which has further enhanced the membrane performance by introducing enhanced mechanical strength, improved separation efficiency, and increased adsorption capacities. Recent research has focused on tailoring nanomaterials within polymeric membranes to target specific contaminants, such as viruses, bacteria, heavy metals, organic pollutants, and microplastics. Functionalization techniques, such as surface modification and incorporation of specific functional groups, have been employed to enhance the adsorption and separation capabilities of these membranes. Moreover, innovative fabrication methods, including layer-by-layer assembly, electrospinning, and template-assisted techniques, have been explored to achieve precise control over membrane properties and morphology. This review provides an overview of the current status and advancements in the utilization of nanomaterials within polymeric membranes for water purification applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
访云完成签到,获得积分20
刚刚
炫哥IRIS发布了新的文献求助10
1秒前
dream发布了新的文献求助10
2秒前
2秒前
3秒前
Donnie完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
8秒前
9秒前
炫哥IRIS完成签到,获得积分10
10秒前
酷酷梦曼发布了新的文献求助30
11秒前
LLLL完成签到,获得积分20
13秒前
耍酷依玉发布了新的文献求助10
13秒前
搞怪涔发布了新的文献求助10
14秒前
18秒前
19秒前
19秒前
19秒前
20秒前
tyj发布了新的文献求助10
22秒前
韩大大发布了新的文献求助10
22秒前
爆米花应助东东呀采纳,获得10
23秒前
shuang0116发布了新的文献求助10
24秒前
Catalysis123发布了新的文献求助10
24秒前
阳地黄发布了新的文献求助10
25秒前
Demo应助JimmyFun采纳,获得10
27秒前
27秒前
烟花应助搞怪涔采纳,获得30
28秒前
30秒前
30秒前
Akim应助开心的渊思采纳,获得10
31秒前
31秒前
33秒前
34秒前
34秒前
35秒前
星辰大海应助方董采纳,获得10
36秒前
lehha完成签到,获得积分10
36秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
QMS18Ed2 | process management. 2nd ed 600
LNG as a marine fuel—Safety and Operational Guidelines - Bunkering 560
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2935983
求助须知:如何正确求助?哪些是违规求助? 2591752
关于积分的说明 6982602
捐赠科研通 2236458
什么是DOI,文献DOI怎么找? 1187740
版权声明 589899
科研通“疑难数据库(出版商)”最低求助积分说明 581407