亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incentive Design for Heterogeneous Client Selection: A Robust Federated Learning Approach

计算机科学 稳健性(进化) 聚类分析 激励 特征选择 数据挖掘 机器学习 生物化学 化学 经济 基因 微观经济学
作者
Papa Pene,Weixian Liao,Wei Yu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5939-5950 被引量:3
标识
DOI:10.1109/jiot.2023.3311690
摘要

Federated learning (FL) allows the collaborative training of machine learning (ML) models between an aggregation server and different clients without sharing their private data. However, the FL archetype is mostly vulnerable to malicious model updates from various clients because of the privacy feature that makes the server see clients as a black-box. When selecting clients, the server has no control on their contributions during training. This opacity of the server towards clients’ data associated with the huge amount of heterogeneous data brings a security risk and poses a deterioration of the model performance in FL. The impact of client selection and data heterogeneity on FL robustness has been overlooked. In this paper, we develop an Incentive Design for Heterogeneous Client Selection (IHCS) to improve the performance while reducing the security risks in FL. The IHCS approach applies a smarter client selection method using cooperative game theory and dynamic clustering of clients based on their heterogeneity level to overcome the challenges of lacking access to clients’ data, unbalanced data, and the lack of applicable data contribution from clients in FL. To do so, we attribute a recognition value to each client using Shapley Value. This recognition index is then used to aggregate the probability of participation level. We also implement, within the IHCS, a heterogeneity-based clustering (HIC) method that helps inhibit the negative influence of data heterogeneity and increase client contributions. Through extensive experiments with empirical results, the proposed approach outperforms the representative works on robustness of FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱心完成签到 ,获得积分10
1秒前
藤椒辣鱼应助科研通管家采纳,获得10
30秒前
藤椒辣鱼应助科研通管家采纳,获得10
30秒前
MchemG应助科研通管家采纳,获得150
31秒前
37秒前
40秒前
55秒前
辣姜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
榜一大哥的负担完成签到 ,获得积分10
1分钟前
back you up完成签到,获得积分10
1分钟前
edc关闭了edc文献求助
1分钟前
2分钟前
2分钟前
开心叫兽完成签到 ,获得积分10
2分钟前
Crisp发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
yunxiao完成签到 ,获得积分10
2分钟前
辣姜完成签到,获得积分10
2分钟前
2分钟前
lanxinge完成签到 ,获得积分10
2分钟前
善学以致用应助hxy采纳,获得10
3分钟前
3分钟前
3分钟前
hxy完成签到,获得积分10
3分钟前
hxy发布了新的文献求助10
3分钟前
3分钟前
猴子请来的救兵完成签到 ,获得积分10
4分钟前
藤椒辣鱼应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
edc发布了新的文献求助10
4分钟前
edc关闭了edc文献求助
4分钟前
5分钟前
星际舟完成签到,获得积分10
6分钟前
zcc111完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
打打应助科研通管家采纳,获得10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983977
捐赠科研通 2729747
什么是DOI,文献DOI怎么找? 1497141
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697