Fretting wear resistance of amorphous/amorphous (AlCrFeNi)N/TiN high entropy nitride nanolaminates

材料科学 无定形固体 复合材料 摩擦学 陶瓷 无定形碳 微观结构 冶金 结晶学 化学
作者
Qingchun Chen,Xiyu Xu,An Li,Quande Zhang,Hengming Yang,Nan Qiu,Yuan Wang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:182: 41-53 被引量:18
标识
DOI:10.1016/j.jmst.2023.09.035
摘要

The application of amorphous high entropy ceramics as wear-resistant materials is limited due to their inherent brittleness at room temperature and strain softening during deformation. In order to overcome this limitation, we constructed amorphous/amorphous (AlCrFeNi)N/TiN nanolaminates with varying modulation period thickness by introducing a second amorphous phase through reactive radio frequency (RF) magnetron sputtering, along with corresponding monolithic amorphous films. Microstructure, mechanical properties, and tribological behaviors of the films were characterized wear in detail. Fretting wear results show that the nanolaminates with an average modulation period of 6 nm exhibited a wear rate of 2.8 times lower than that of the (AlCrFeNi)N film and 8.4 times lower than that of the TiN film. Further analysis using FIB-TEM revealed that the enhanced wear resistance of (AlCrFeNi)N/TiN nanolaminates was attributed to the high-density heterointerfaces. These interfaces inhibited the initiation and propagation of mature shear bands and acted as barriers to stress distribution. Additionally, the oxide composite layer at the interface demonstrated a synergistic effect through a mechanically induced tribo-chemical reaction, resulting in slight plastic deformation. For the amorphous (AlCrFeNi)N film, moderate wear resistance was achieved through the formation of transfer layer at the interface. For the amorphous TiN film, the dimensional stability of the film deteriorates due to the significant strain softening that occurs during deformation. This study deepens our understanding of the friction mechanisms involved in amorphous high entropy ceramics, offering valuable insights for the design of high damage-resistant materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SH完成签到,获得积分10
刚刚
刚刚
明理的曼云完成签到,获得积分10
刚刚
kumarr完成签到,获得积分10
刚刚
zzy关闭了zzy文献求助
刚刚
刚刚
共享精神应助谢尔顿采纳,获得50
1秒前
不久后扽下二号完成签到,获得积分10
1秒前
馨宝贝关注了科研通微信公众号
1秒前
liyang完成签到,获得积分10
2秒前
2秒前
枫莘梓完成签到,获得积分20
2秒前
起点完成签到,获得积分10
2秒前
3秒前
醉爱天下完成签到,获得积分10
3秒前
甜橙汁完成签到,获得积分10
3秒前
红红酱发布了新的文献求助10
4秒前
4秒前
1210xi完成签到,获得积分10
4秒前
所所应助whitebird采纳,获得10
4秒前
王旋烦着呢完成签到,获得积分10
4秒前
分歧者咋咋完成签到,获得积分10
4秒前
默己完成签到 ,获得积分10
5秒前
梁海萍发布了新的文献求助10
6秒前
帅帅的叔完成签到,获得积分10
6秒前
老Mark完成签到,获得积分10
6秒前
万幸鹿完成签到,获得积分10
6秒前
科目三应助gaoyankai采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
xyw发布了新的文献求助10
6秒前
7秒前
枫莘梓发布了新的文献求助10
7秒前
ccm应助huhu采纳,获得10
7秒前
8秒前
美好闭月发布了新的文献求助10
8秒前
fucccboi完成签到,获得积分10
9秒前
沨祈完成签到,获得积分10
9秒前
感动板凳完成签到,获得积分10
9秒前
丘山杉完成签到,获得积分10
10秒前
www完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477622
求助须知:如何正确求助?哪些是违规求助? 4579414
关于积分的说明 14368860
捐赠科研通 4507608
什么是DOI,文献DOI怎么找? 2470080
邀请新用户注册赠送积分活动 1457006
关于科研通互助平台的介绍 1431013