Fretting wear resistance of amorphous/amorphous (AlCrFeNi)N/TiN high entropy nitride nanolaminates

材料科学 无定形固体 复合材料 摩擦学 陶瓷 无定形碳 微观结构 冶金 结晶学 化学
作者
Qingchun Chen,Xiyu Xu,An Li,Quande Zhang,Hengming Yang,Nan Qiu,Yuan Wang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:182: 41-53 被引量:18
标识
DOI:10.1016/j.jmst.2023.09.035
摘要

The application of amorphous high entropy ceramics as wear-resistant materials is limited due to their inherent brittleness at room temperature and strain softening during deformation. In order to overcome this limitation, we constructed amorphous/amorphous (AlCrFeNi)N/TiN nanolaminates with varying modulation period thickness by introducing a second amorphous phase through reactive radio frequency (RF) magnetron sputtering, along with corresponding monolithic amorphous films. Microstructure, mechanical properties, and tribological behaviors of the films were characterized wear in detail. Fretting wear results show that the nanolaminates with an average modulation period of 6 nm exhibited a wear rate of 2.8 times lower than that of the (AlCrFeNi)N film and 8.4 times lower than that of the TiN film. Further analysis using FIB-TEM revealed that the enhanced wear resistance of (AlCrFeNi)N/TiN nanolaminates was attributed to the high-density heterointerfaces. These interfaces inhibited the initiation and propagation of mature shear bands and acted as barriers to stress distribution. Additionally, the oxide composite layer at the interface demonstrated a synergistic effect through a mechanically induced tribo-chemical reaction, resulting in slight plastic deformation. For the amorphous (AlCrFeNi)N film, moderate wear resistance was achieved through the formation of transfer layer at the interface. For the amorphous TiN film, the dimensional stability of the film deteriorates due to the significant strain softening that occurs during deformation. This study deepens our understanding of the friction mechanisms involved in amorphous high entropy ceramics, offering valuable insights for the design of high damage-resistant materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JEK完成签到,获得积分10
1秒前
gcl发布了新的文献求助20
1秒前
孤独千愁完成签到,获得积分10
1秒前
2秒前
NEKO发布了新的文献求助10
2秒前
玄远完成签到,获得积分10
2秒前
千城发布了新的文献求助10
3秒前
李爱国应助Aeeeeeeon采纳,获得10
4秒前
小木林完成签到,获得积分10
4秒前
田様应助tuyfytjt采纳,获得10
4秒前
yanping关注了科研通微信公众号
5秒前
faye发布了新的文献求助10
5秒前
李李05发布了新的文献求助10
6秒前
13完成签到 ,获得积分10
7秒前
不是肖六完成签到,获得积分10
7秒前
xuan完成签到,获得积分10
7秒前
半圭为璋发布了新的文献求助10
7秒前
NexusExplorer应助Blve采纳,获得10
8秒前
8秒前
共享精神应助小玉采纳,获得10
8秒前
9秒前
SciGPT应助果茂采纳,获得10
10秒前
咕_完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
南山完成签到,获得积分10
12秒前
tuyfytjt完成签到,获得积分10
13秒前
karry完成签到,获得积分20
13秒前
X__完成签到,获得积分10
16秒前
赵云发布了新的文献求助10
16秒前
tuyfytjt发布了新的文献求助10
16秒前
tanrui发布了新的文献求助10
16秒前
dove完成签到 ,获得积分10
17秒前
赘婿应助zzz采纳,获得10
19秒前
充电宝应助JEK采纳,获得10
19秒前
19秒前
Lucas应助zpeng采纳,获得10
20秒前
勤劳钧发布了新的文献求助10
21秒前
千城完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602595
求助须知:如何正确求助?哪些是违规求助? 4687667
关于积分的说明 14850700
捐赠科研通 4684658
什么是DOI,文献DOI怎么找? 2539964
邀请新用户注册赠送积分活动 1506717
关于科研通互助平台的介绍 1471428