Fretting wear resistance of amorphous/amorphous (AlCrFeNi)N/TiN high entropy nitride nanolaminates

材料科学 无定形固体 复合材料 摩擦学 陶瓷 无定形碳 微观结构 冶金 结晶学 化学
作者
Qingchun Chen,Xiyu Xu,An Li,Quande Zhang,Hengming Yang,Nan Qiu,Yuan Wang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:182: 41-53 被引量:18
标识
DOI:10.1016/j.jmst.2023.09.035
摘要

The application of amorphous high entropy ceramics as wear-resistant materials is limited due to their inherent brittleness at room temperature and strain softening during deformation. In order to overcome this limitation, we constructed amorphous/amorphous (AlCrFeNi)N/TiN nanolaminates with varying modulation period thickness by introducing a second amorphous phase through reactive radio frequency (RF) magnetron sputtering, along with corresponding monolithic amorphous films. Microstructure, mechanical properties, and tribological behaviors of the films were characterized wear in detail. Fretting wear results show that the nanolaminates with an average modulation period of 6 nm exhibited a wear rate of 2.8 times lower than that of the (AlCrFeNi)N film and 8.4 times lower than that of the TiN film. Further analysis using FIB-TEM revealed that the enhanced wear resistance of (AlCrFeNi)N/TiN nanolaminates was attributed to the high-density heterointerfaces. These interfaces inhibited the initiation and propagation of mature shear bands and acted as barriers to stress distribution. Additionally, the oxide composite layer at the interface demonstrated a synergistic effect through a mechanically induced tribo-chemical reaction, resulting in slight plastic deformation. For the amorphous (AlCrFeNi)N film, moderate wear resistance was achieved through the formation of transfer layer at the interface. For the amorphous TiN film, the dimensional stability of the film deteriorates due to the significant strain softening that occurs during deformation. This study deepens our understanding of the friction mechanisms involved in amorphous high entropy ceramics, offering valuable insights for the design of high damage-resistant materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的荟发布了新的文献求助10
刚刚
刚刚
123发布了新的文献求助10
1秒前
两仪发布了新的文献求助10
1秒前
Horizon完成签到,获得积分10
1秒前
卡卡罗特完成签到,获得积分10
1秒前
无极微光应助ningwu采纳,获得20
3秒前
3秒前
3秒前
嘿嘿应助竹子快跑采纳,获得10
3秒前
3秒前
LV完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
毛妹完成签到,获得积分10
4秒前
yuyuyuyuyuyuyu完成签到,获得积分10
4秒前
似水年华发布了新的文献求助10
4秒前
4秒前
4秒前
正直尔曼完成签到,获得积分10
5秒前
鄙视注册完成签到,获得积分0
5秒前
111完成签到,获得积分10
5秒前
5秒前
欣喜莫言完成签到,获得积分10
5秒前
mianmian0118完成签到 ,获得积分10
5秒前
乐乐应助排骨帮帮主采纳,获得10
5秒前
konka完成签到,获得积分20
6秒前
科研人发布了新的文献求助10
6秒前
漫天发布了新的文献求助10
6秒前
柴六斤完成签到,获得积分10
7秒前
研友_841KWL完成签到,获得积分10
7秒前
7秒前
领导范儿应助lzy采纳,获得30
7秒前
浮游应助QDK采纳,获得10
8秒前
fucccboi发布了新的文献求助20
8秒前
朴实雨柏完成签到 ,获得积分10
8秒前
8秒前
称心的尔安完成签到,获得积分10
8秒前
8秒前
星星发布了新的文献求助10
9秒前
MF发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721