A flexible and efficient knowledge-guided machine learning data assimilation (KGML-DA) framework for agroecosystem prediction in the US Midwest

计算机科学 初级生产 集合卡尔曼滤波器 数据同化 背景(考古学) 机器学习 叶面积指数 卡尔曼滤波器 人工智能 生态系统 扩展卡尔曼滤波器 生态学 气象学 生物 物理 古生物学
作者
Qi Yang,Licheng Liu,Junxiong Zhou,Rahul Ghosh,Bin Peng,Kaiyu Guan,Jinyun Tang,Wang Zhou,Vipin Kumar,Zhenong Jin
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:299: 113880-113880 被引量:5
标识
DOI:10.1016/j.rse.2023.113880
摘要

Process-based models are widely used to predict the agroecosystem dynamics, but such modeled results often contain considerable uncertainty due to the imperfect model structure, biased model parameters, and inaccurate or inaccessible model inputs. Data assimilation (DA) techniques are widely adopted to reduce prediction uncertainty by calibrating model parameters or dynamically updating the model state variables using observations. However, high computational cost, difficulties in mitigating model structural error, and low flexibility in framework development hinder its applications in large-scale agroecosystem predictions. In this study, we addressed these challenges by proposing a novel DA framework that integrates a Knowledge-Guided Machine Learning (KGML)-based surrogate with tensorized ensemble Kalman filter (EnKF) and parallelized particle swarm optimization (PSO) to effectively assimilate historical and in-season multi-source remote sensing data. Specifically, we incorporate knowledge from a process-based model, ecosys, into a Gated Recurrent Unit (GRU)-based hierarchical neural network. The hierarchical architecture of KGML-DA mimics key processes of ecosys and builds a causal relationship between target variables. Using carbon budget quantification in the US Corn-Belt as a context, we evaluated KGML-DA's performance in predicting key processes of the carbon cycle at three agricultural sites (US-Ne1, US-Ne2, US-Ne3), along with county-level (627 counties) and 30-m pixel-level (Champaign County, IL) grain yield. The site experiments show that updating the upstream variable, e.g., gross primary production (GPP), improved the prediction of downstream variables such as ecosystem respiration, net ecosystem exchange, biomass, and leaf area index (LAI), with RMSE reductions ranging from 9.2% to 30.5% for corn and 4.8% to 24.6% for soybean. Uncertainty in downstream variables was automatically constrained after correcting the upstream variables, demonstrating the effectiveness of the causality linkages in the hierarchical surrogate. We found joint use of in-season GPP and evapotranspiration (ET) products along with historical GPP and surveyed yields achieved the best prediction for county-level yields, while assimilating in-season LAI observations benefitted the prediction in extreme years. Uncertainty and error analysis of regional yield estimation demonstrated that KGML-DA could reduce prediction error by 26.5% for corn and 36.2% for soybean. Remarkably, the GPU-based tensor operation design makes this DA framework more than 7000 times faster than the PB model with a High-Performance Computing system, indicating the high potential of the proposed framework for in-season, high-resolution agroecosystem predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的鼠标完成签到 ,获得积分10
刚刚
1秒前
Mannose发布了新的文献求助20
1秒前
Surge发布了新的文献求助20
1秒前
Warm_Cloud完成签到 ,获得积分10
1秒前
1秒前
幽默鱼完成签到,获得积分10
1秒前
小猴子完成签到,获得积分10
1秒前
飞0802完成签到,获得积分10
2秒前
二两微醺发布了新的文献求助10
2秒前
yujiayou完成签到,获得积分10
2秒前
秦笑天发布了新的文献求助10
2秒前
柔弱的奇迹完成签到,获得积分20
3秒前
3秒前
lvlv完成签到,获得积分10
4秒前
sun2发布了新的文献求助10
4秒前
hhh完成签到,获得积分10
4秒前
灿灿应助瘦瘦的迎南采纳,获得10
4秒前
5秒前
5秒前
zls发布了新的文献求助10
5秒前
6秒前
慕青应助qy97采纳,获得10
7秒前
贤惠的老黑完成签到 ,获得积分10
7秒前
xiaohao完成签到 ,获得积分10
7秒前
shiche发布了新的文献求助10
7秒前
sun2完成签到,获得积分10
9秒前
cherish发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
zzz发布了新的文献求助10
10秒前
11秒前
11秒前
干净易真关注了科研通微信公众号
11秒前
12秒前
Joyceban发布了新的文献求助10
12秒前
sinlar完成签到,获得积分20
12秒前
cscscs发布了新的文献求助10
13秒前
雪白问兰应助happyboy2008采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151396
求助须知:如何正确求助?哪些是违规求助? 2802862
关于积分的说明 7850843
捐赠科研通 2460290
什么是DOI,文献DOI怎么找? 1309701
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760