A flexible and efficient knowledge-guided machine learning data assimilation (KGML-DA) framework for agroecosystem prediction in the US Midwest

计算机科学 初级生产 集合卡尔曼滤波器 数据同化 背景(考古学) 机器学习 叶面积指数 卡尔曼滤波器 人工智能 生态系统 扩展卡尔曼滤波器 生态学 气象学 古生物学 物理 生物
作者
Qi Yang,Licheng Liu,Junxiong Zhou,Rahul Ghosh,Bin Peng,Kaiyu Guan,Jinyun Tang,Wang Zhou,Vipin Kumar,Zhenong Jin
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:299: 113880-113880 被引量:13
标识
DOI:10.1016/j.rse.2023.113880
摘要

Process-based models are widely used to predict the agroecosystem dynamics, but such modeled results often contain considerable uncertainty due to the imperfect model structure, biased model parameters, and inaccurate or inaccessible model inputs. Data assimilation (DA) techniques are widely adopted to reduce prediction uncertainty by calibrating model parameters or dynamically updating the model state variables using observations. However, high computational cost, difficulties in mitigating model structural error, and low flexibility in framework development hinder its applications in large-scale agroecosystem predictions. In this study, we addressed these challenges by proposing a novel DA framework that integrates a Knowledge-Guided Machine Learning (KGML)-based surrogate with tensorized ensemble Kalman filter (EnKF) and parallelized particle swarm optimization (PSO) to effectively assimilate historical and in-season multi-source remote sensing data. Specifically, we incorporate knowledge from a process-based model, ecosys, into a Gated Recurrent Unit (GRU)-based hierarchical neural network. The hierarchical architecture of KGML-DA mimics key processes of ecosys and builds a causal relationship between target variables. Using carbon budget quantification in the US Corn-Belt as a context, we evaluated KGML-DA's performance in predicting key processes of the carbon cycle at three agricultural sites (US-Ne1, US-Ne2, US-Ne3), along with county-level (627 counties) and 30-m pixel-level (Champaign County, IL) grain yield. The site experiments show that updating the upstream variable, e.g., gross primary production (GPP), improved the prediction of downstream variables such as ecosystem respiration, net ecosystem exchange, biomass, and leaf area index (LAI), with RMSE reductions ranging from 9.2% to 30.5% for corn and 4.8% to 24.6% for soybean. Uncertainty in downstream variables was automatically constrained after correcting the upstream variables, demonstrating the effectiveness of the causality linkages in the hierarchical surrogate. We found joint use of in-season GPP and evapotranspiration (ET) products along with historical GPP and surveyed yields achieved the best prediction for county-level yields, while assimilating in-season LAI observations benefitted the prediction in extreme years. Uncertainty and error analysis of regional yield estimation demonstrated that KGML-DA could reduce prediction error by 26.5% for corn and 36.2% for soybean. Remarkably, the GPU-based tensor operation design makes this DA framework more than 7000 times faster than the PB model with a High-Performance Computing system, indicating the high potential of the proposed framework for in-season, high-resolution agroecosystem predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在人中发布了新的文献求助10
1秒前
1秒前
fls221完成签到,获得积分10
2秒前
Laity完成签到,获得积分10
4秒前
4秒前
健忘捕发布了新的文献求助10
4秒前
林林林发布了新的文献求助10
5秒前
ok完成签到 ,获得积分10
6秒前
乐乐应助wewe采纳,获得30
6秒前
6秒前
拥有八根情丝完成签到 ,获得积分10
7秒前
科研通AI5应助Rex采纳,获得10
8秒前
9秒前
情怀应助樱桃小丸子采纳,获得10
10秒前
好难啊发布了新的文献求助10
11秒前
11秒前
15秒前
16秒前
16秒前
wewe完成签到,获得积分20
17秒前
李大爷发布了新的文献求助10
17秒前
Kevin完成签到,获得积分10
19秒前
酷炫的尔丝完成签到 ,获得积分10
19秒前
Hello应助标致的蛋挞采纳,获得50
20秒前
大个应助明亮的宁采纳,获得10
21秒前
Rainbow发布了新的文献求助10
21秒前
anyone发布了新的文献求助30
22秒前
充电宝应助SY采纳,获得10
23秒前
D先生完成签到,获得积分20
23秒前
yxt完成签到,获得积分10
23秒前
momo发布了新的文献求助10
24秒前
26秒前
苏照杭应助长度2到采纳,获得10
26秒前
27秒前
次我完成签到,获得积分10
27秒前
qisili关注了科研通微信公众号
28秒前
Owen应助李大爷采纳,获得10
29秒前
30秒前
脑洞疼应助迅速冰岚采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851